https://linux-sunxi.org/SPIdev
The SPI bus (or Serial Peripheral Interface bus) is a synchronous serial data link originally created by motorola.
For more information about SPI please refer to this link: http://en.wikipedia.org/wiki/Serial_Peripheral_Interface
In the linux kernel the SPI works only in master mode.
There is a way of using the spi kernel driver to work as a device in the userspace. It's called SPIdev.
Contents[hide] |
Configuring your kernel
For using it you will have to enable this options in your defconfig or manually in your kernel:
CONFIG_SPI_SUN4I=y
CONFIG_SPI_SUN6I=y
CONFIG_SPI=y
CONFIG_SPI_MASTER=y
CONFIG_EXPERIMENTAL=y
CONFIG_SPI_SPIDEV=y
More information
For more information about using SPIdev in the userspace please refer to (Documentation/spi/): http://lxr.free-electrons.com/source/Documentation/spi/
You will find there:
- spidev (contains the documentantion about the spidev)
In tools/spi (http://lxr.free-electrons.com/source/tools/spi/) you will find:
- spidev_fdx.c (contains a simple example in C of a full duplex communication)
- spidev_test.c (contains a simple example in C of a half duplex communication)
Configuring your FEX
It is important to configure your .fex file to be able to do so:
(if you are using spi0)
[spi0_para]
spi_used = 1
spi_cs_bitmap = 1
spi_cs0 = port:PI10<2><default><default><default>
spi_sclk = port:PI11<2><default><default><default>
spi_mosi = port:PI12<2><default><default><default>
spi_miso = port:PI13<2><default><default><default>
(here you will specify the number of spi devices your card will have, if you plan only to use the spidev just put 1):
[spi_devices]
spi_dev_num = 1
(here you will have to put in the modalias "spidev")
[spi_board0]
modalias = "spidev"
max_speed_hz = 12000000
bus_num = 0
chip_select = 0
mode = 0
full_duplex = 1
manual_cs = 0
For more information about editing the fex file: http://linux-sunxi.org/Fex_Guide
Configuring your device-tree (mainline)
For the most boards SPI is disabled by default. To enable it you have to modify device-tree of your board.
Example for pcDuino3
As an example, we will enable SPI0 for this board.
We will have to modify arch/arm/boot/dts/sun7i-a20-pcduino3.dts.
First of all, for aesthetic reasons, we want spi0 to appear as /sys/class/spi_master/spi0 and not as ls /sys/class/spi_master/spi32766, therefore we add spi0 = &spi0; in the aliases section.
Second - we enable spi0 by adding +&spi0 section. In example below spidev is also enabled, so that /dev/spidev0.0 could be accessible from the userspace (please note, that you must also enable CONFIG_SPI_SPIDEV in kernel configuration). If you don't need that functionality, you can omit spidev@0x00 section.
--- a/arch/arm/boot/dts/sun7i-a20-pcduino3.dts
+++ b/arch/arm/boot/dts/sun7i-a20-pcduino3.dts
@@ -, +, @@ aliases {
serial0 = &uart0;
+ spi0 = &spi0;
}; chosen {
@@ -, +, @@
regulator-name = "avcc";
}; +&spi0 {
+ pinctrl-names = "default";
+ pinctrl- = <&spi0_pins_a>,
+ <&spi0_cs0_pins_a>;
+ status = "okay";
+
+ spidev@0x00 {
+ compatible = "spidev";
+ spi-max-frequency = <>;
+ reg = <>;
+ };
+};
+
®_usb1_vbus {
status = "okay";
};
Example for A10s Olinuxino Micro UEXT connector
--- a/arch/arm/boot/dts/sun5i-a10s.dtsi
+++ b/arch/arm/boot/dts/sun5i-a10s.dtsi
@@ -, +, @@
clocks = <&apb1_gates >;
status = "disabled";
};
+
+ spi2: spi@01c17000 {
+ compatible = "allwinner,sun4i-a10-spi";
+ reg = <0x01c17000 0x1000>;
+ interrupts = <>;
+ clocks = <&ahb_gates >, <&spi2_clk>;
+ clock-names = "ahb", "mod";
+ dmas = <&dma SUN4I_DMA_DEDICATED >,
+ <&dma SUN4I_DMA_DEDICATED >;
+ dma-names = "rx", "tx";
+ status = "disabled";
+ #address-cells = <>;
+ #size-cells = <>;
+ };
};
}; @@ -, +, @@
allwinner,drive = <SUN4I_PINCTRL_30_MA>;
allwinner,pull = <SUN4I_PINCTRL_NO_PULL>;
};
+
+ spi2_pins_a: spi2@ {
+ allwinner,pins = "PB11", "PB12", "PB13", "PB14";
+ allwinner,function = "spi2";
+ allwinner,drive = <SUN4I_PINCTRL_10_MA>;
+ allwinner,pull = <SUN4I_PINCTRL_NO_PULL>;
+ };
+
+ spi2_pins_b: spi2@ {
+ allwinner,pins = "PE00", "PE01", "PE02", "PE03";
+ allwinner,function = "spi2";
+ allwinner,drive = <SUN4I_PINCTRL_10_MA>;
+ allwinner,pull = <SUN4I_PINCTRL_NO_PULL>;
+ };
}; --- a/arch/arm/boot/dts/sun5i-a10s-olinuxino-micro.dts
+++ b/arch/arm/boot/dts/sun5i-a10s-olinuxino-micro.dts
@@ -, +, @@
status = "okay";
}; +&spi2 {
+ pinctrl-names = "default";
+ pinctrl- = <&spi2_pins_a>;
+ status = "okay";
+};
+
&ohci0 {
status = "okay";
}; --- a/arch/arm/boot/dts/sun5i-a10s-olinuxino-micro.dts
+++ b/arch/arm/boot/dts/sun5i-a10s-olinuxino-micro.dts
@@ -, +, @@
pinctrl-names = "default";
pinctrl- = <&spi2_pins_a>;
status = "okay";
+ spi2_0 {
+ #address-cells = <>;
+ #size-cells = <>;
+
+ compatible = "spidev";
+
+ reg = <>;
+ spi-max-frequency = <>;
+ };
}; &ohci0 {
Using the SPI bus
In the user space
Once you will have this set you can boot your sunxi device and you will have in your dev in /dev/spidevn.0
Transfer size is limited to 64 bytes on sun4i and 128 bytes on sun6i. You have to loop over longer messages in your code. Some SPI devices may require that you prefix each message fragment with a header, other may not. YMMV. Look up transfer diagrams in device datasheet.
Known problems: Using the spidev_test.c example you will receive [spi]: drivers/spi/spi_sunxi.c(L1025) cpu tx data time out!
Using the spidev_fdx.c method it works like a charm! :)
I've made a user friendlier library (C functions) to comunicate using SPIdev:
(Note, this library supose the read and write address to be 2 bytes)
/*
spidevlib.c - A user-space program to comunicate using spidev.
Gustavo Zamboni
*/
#include <stdint.h>
#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
#include <getopt.h>
#include <fcntl.h>
#include <sys/ioctl.h>
#include <linux/types.h>
#include <linux/spi/spidev.h> char buf[];
char buf2[];
extern int com_serial;
extern int failcount; struct spi_ioc_transfer xfer[]; //////////
// Init SPIdev
//////////
int spi_init(char filename[])
{
int file;
__u8 mode, lsb, bits;
__u32 speed=; if ((file = open(filename,O_RDWR)) < )
{
printf("Failed to open the bus.");
/* ERROR HANDLING; you can check errno to see what went wrong */
com_serial=;
exit();
} ///////////////
// Verifications
///////////////
//possible modes: mode |= SPI_LOOP; mode |= SPI_CPHA; mode |= SPI_CPOL; mode |= SPI_LSB_FIRST; mode |= SPI_CS_HIGH; mode |= SPI_3WIRE; mode |= SPI_NO_CS; mode |= SPI_READY;
//multiple possibilities using |
/*
if (ioctl(file, SPI_IOC_WR_MODE, &mode)<0) {
perror("can't set spi mode");
return;
}
*/ if (ioctl(file, SPI_IOC_RD_MODE, &mode) < )
{
perror("SPI rd_mode");
return;
}
if (ioctl(file, SPI_IOC_RD_LSB_FIRST, &lsb) < )
{
perror("SPI rd_lsb_fist");
return;
}
//sunxi supports only 8 bits
/*
if (ioctl(file, SPI_IOC_WR_BITS_PER_WORD, (__u8[1]){8})<0)
{
perror("can't set bits per word");
return;
}
*/
if (ioctl(file, SPI_IOC_RD_BITS_PER_WORD, &bits) < )
{
perror("SPI bits_per_word");
return;
}
/*
if (ioctl(file, SPI_IOC_WR_MAX_SPEED_HZ, &speed)<0)
{
perror("can't set max speed hz");
return;
}
*/
if (ioctl(file, SPI_IOC_RD_MAX_SPEED_HZ, &speed) < )
{
perror("SPI max_speed_hz");
return;
} printf("%s: spi mode %d, %d bits %sper word, %d Hz max\n",filename, mode, bits, lsb ? "(lsb first) " : "", speed); //xfer[0].tx_buf = (unsigned long)buf;
xfer[].len = ; /* Length of command to write*/
xfer[].cs_change = ; /* Keep CS activated */
xfer[].delay_usecs = , //delay in us
xfer[].speed_hz = , //speed
xfer[].bits_per_word = , // bites per word 8 //xfer[1].rx_buf = (unsigned long) buf2;
xfer[].len = ; /* Length of Data to read */
xfer[].cs_change = ; /* Keep CS activated */
xfer[].delay_usecs = ;
xfer[].speed_hz = ;
xfer[].bits_per_word = ; return file;
} //////////
// Read n bytes from the 2 bytes add1 add2 address
// 这种2个spi_ioc_transfer一前以后的方式,前面的永远是master发送,后面的永远是slave的发送,这种方式,相当于spi总线里的 spi_write_then_read 函数的实现,这种方式只适用于小量数据的传输,即一次收发小于32字节的数据。(应该是这样的,但还是有待进一步考证)。只有在同一个spi_ioc_transfer结构里的tx和rx才是同时收发的。
//////////
char * spi_read(int add1,int add2,int nbytes,int file)
{
int status; memset(buf, , sizeof buf);
memset(buf2, , sizeof buf2);
buf[] = 0x01;
buf[] = add1;
buf[] = add2;
xfer[].tx_buf = (unsigned long)buf;
xfer[].len = ; /* Length of command to write*/
xfer[].rx_buf = (unsigned long) buf2;
xfer[].len = nbytes; /* Length of Data to read */
status = ioctl(file, SPI_IOC_MESSAGE(), xfer);
if (status < )
{
perror("SPI_IOC_MESSAGE");
return;
}
//printf("env: %02x %02x %02x\n", buf[0], buf[1], buf[2]);
//printf("ret: %02x %02x %02x %02x\n", buf2[0], buf2[1], buf2[2], buf2[3]); com_serial=;
failcount=;
return buf2;
} //////////
// Write n bytes int the 2 bytes address add1 add2
//////////
void spi_write(int add1,int add2,int nbytes,char value[],int file)
{
unsigned char buf[], buf2[];
int status; memset(buf, , sizeof buf);
memset(buf2, , sizeof buf2);
buf[] = 0x00;
buf[] = add1;
buf[] = add2;
if (nbytes>=) buf[] = value[];
if (nbytes>=) buf[] = value[];
if (nbytes>=) buf[] = value[];
if (nbytes>=) buf[] = value[];
xfer[].tx_buf = (unsigned long)buf;
xfer[].len = nbytes+; /* Length of command to write*/
status = ioctl(file, SPI_IOC_MESSAGE(), xfer);
if (status < )
{
perror("SPI_IOC_MESSAGE");
return;
}
//printf("env: %02x %02x %02x\n", buf[0], buf[1], buf[2]);
//printf("ret: %02x %02x %02x %02x\n", buf2[0], buf2[1], buf2[2], buf2[3]); com_serial=;
failcount=;
}
Usage example:
char *buffer;
char buf[]; file=spi_init("/dev/spidev0.0"); //dev buf[] = 0x41;
buf[] = 0xFF;
spi_write(0xE6,0x0E,,buf,file); //this will write value 0x41FF to the address 0xE60E buffer=(char *)spi_read(0xE6,0x0E,,file); //reading the address 0xE60E close(file);
For info it is possible to use all the 12000000 Hz frequency limit transfers, however bear in mind, that frequency will not scale linearly. There are fixed frequencies you can select from, especially at the higher end:
- 100.00 MHz
- 50.00 MHz
- 33.33 MHz
- 25.00 MHz
- 20.00 MHz
- 16.66 MHz
- 14.28 MHZ
- 12.50 MHz
- 11.11 MHz
- 10.00 MHz
- 9.09 MHz
- 8.33 MHz
- 7.69 MHz
- 7.14 MHz
- 6.66 MHz
- 6.25 MHz
- 5.88 MHz
- 5.55 MHz
- 5.26 MHz
- 5.00 MHz
- 4.76 MHz
- 4.54 MHz
- 4.34 MHz
- 4.16 MHz
- 3.84 MHz
- ...
In the kernel space
If you are coding a driver for a SPI device, it makes most sense to code it as a kernel module. Instead of using /dev/spidevX.X you should register a new (slave) device and exchange data through it. If you are wondering what bus number you should use, you can find available buses by listing /sys/class/spi_master. There should be nodes like spi0, spi1... Number after spi is bus number. What number gets spi master depends on device-tree configuration.
Here is an example of module, that writes 0x00 to SPI when module is initialized and 0xff when uninitialized. It is using bus number 0 and communicating at the speed of 1Hz:
#include <linux/init.h>
#include <linux/module.h>
#include <linux/spi/spi.h> #define MY_BUS_NUM 0
static struct spi_device *spi_device; static int __init spi_init(void)
{
int ret;
unsigned char ch = 0x00;
struct spi_master *master; //Register information about your slave device:
struct spi_board_info spi_device_info = {
.modalias = "my-device-driver-name",
.max_speed_hz = , //speed your device (slave) can handle
.bus_num = MY_BUS_NUM,
.chip_select = ,
.mode = ,
}; /*To send data we have to know what spi port/pins should be used. This information
can be found in the device-tree. */
master = spi_busnum_to_master( spi_device_info.bus_num );
if( !master ){
printk("MASTER not found.\n");
return -ENODEV;
} // create a new slave device, given the master and device info
spi_device = spi_new_device( master, &spi_device_info ); if( !spi_device ) {
printk("FAILED to create slave.\n");
return -ENODEV;
} spi_device->bits_per_word = ; ret = spi_setup( spi_device ); if( ret ){
printk("FAILED to setup slave.\n");
spi_unregister_device( spi_device );
return -ENODEV;
} spi_write(spi_device, &ch, sizeof(ch)); return ;
} static void __exit spi_exit(void)
{
unsigned char ch = 0Xff; if( spi_device ){
spi_write(spi_device, &ch, sizeof(ch));
spi_unregister_device( spi_device );
}
} module_init(spi_init);
module_exit(spi_exit); MODULE_LICENSE("GPL");
MODULE_AUTHOR("Piktas Zuikis <[email protected]>");
MODULE_DESCRIPTION("SPI module example");
SPI NOR Flash
The Allwinner Boot Rom can boot from NOR flash packaged over an SPI interface. Booting devices from SPI flash is covered in this other article.