I would like to represent a value as a 64bit signed long
, such that values larger than (2**63)-1 are represented as negative, however Python long
has infinite precision. Is there a 'quick' way for me to achieve this?
我想将一个值表示为64位有符号的长,这样大于(2**63)-1的值就表示为负,但是Python long具有无限的精度。有什么“快速”的方法可以让我做到这一点吗?
4 个解决方案
#1
13
You could use ctypes.c_longlong
:
您可以使用ctypes.c_longlong:
>>> from ctypes import c_longlong as ll
>>> ll(2 ** 63 - 1)
c_longlong(9223372036854775807L)
>>> ll(2 ** 63)
c_longlong(-9223372036854775808L)
>>> ll(2 ** 63).value
-9223372036854775808L
This is really only an option if you know for sure that a signed long long
will be 64 bits wide on the target machine(s).
这实际上只是一个选项,如果您确定一个带符号的长长长在目标机器上将是64位宽。
Edit: jorendorff's idea of defining a class for 64 bit numbers is appealing. Ideally you want to minimize the number of explicit class creations.
编辑:jorendorff为64位数字定义类的想法很有吸引力。理想情况下,您希望最小化显式类创建的数量。
Using c_longlong
, you could do something like this (note: Python 3.x only!):
使用c_longlong,您可以执行如下操作(注意:Python 3。x !):
from ctypes import c_longlong
class ll(int):
def __new__(cls, n):
return int.__new__(cls, c_longlong(n).value)
def __add__(self, other):
return ll(super().__add__(other))
def __radd__(self, other):
return ll(other.__add__(self))
def __sub__(self, other):
return ll(super().__sub__(other))
def __rsub__(self, other):
return ll(other.__sub__(self))
...
In this way the result of ll(2 ** 63) - 1
will indeed be 9223372036854775807
. This construction may result in a performance penalty though, so depending on what you want to do exactly, defining a class such as the above may not be worth it. When in doubt, use timeit
.
这样,ll(2 ** 63) - 1的结果确实是9223372036854775807。但是,这种构造可能会导致性能损失,因此根据您想要确切地做什么,定义一个类(如上面所示)可能不值得。当你不确定的时候,用时间。
#2
10
Can you use numpy? It has an int64 type that does exactly what you want.
你可以用numpy吗?它有一个int64类型,可以完全满足您的需求。
In [1]: import numpy
In [2]: numpy.int64(2**63-1)
Out[2]: 9223372036854775807
In [3]: numpy.int64(2**63-1)+1
Out[3]: -9223372036854775808
It's transparent to users, unlike the ctypes example, and it's coded in C so it'll be faster than rolling your own class in Python. Numpy may be bigger than the other solutions, but if you're doing numerical analysis, you will appreciate having it.
它对用户是透明的,不像ctypes示例,它是用C编写的,所以它比在Python中滚动自己的类要快。Numpy可能比其他解要大,但是如果你做数值分析,你会喜欢它。
#3
3
The quickest thing is probably to truncate the result to 64 bits yourself:
最快的方法可能是将结果截断为64位:
def to_int64(n):
n = n & ((1 << 64) - 1)
if n > (1 << 63) - 1:
n -= 1 << 64
return n
You can of course define your own numeric type that automatically does this every time you do any sort of arithmetic operation:
当然,你可以定义你自己的数字类型,每次你做任何算术运算时,它都会自动完成:
class Int64:
def __init__(self, n):
if isinstance(n, Int64):
n = n.val
self.val = to_int64(n)
def __add__(self, other):
return Int64(self.val + other)
def __radd__(self, other):
return Int64(other + self.val)
def __sub__(self, other):
return Int64(self.val - other)
...
but that is not particularly "quick" to implement.
但实施起来并不特别“迅速”。
#4
1
Have a look at the ctypes module, it is used to call foreign DLLs/libraries from python. There a some data types that correspond to C types, for example
看看ctypes模块,它用于从python调用外部dll /库。例如,有一些数据类型对应于C类型
class c_longlong
类c_longlong
#1
13
You could use ctypes.c_longlong
:
您可以使用ctypes.c_longlong:
>>> from ctypes import c_longlong as ll
>>> ll(2 ** 63 - 1)
c_longlong(9223372036854775807L)
>>> ll(2 ** 63)
c_longlong(-9223372036854775808L)
>>> ll(2 ** 63).value
-9223372036854775808L
This is really only an option if you know for sure that a signed long long
will be 64 bits wide on the target machine(s).
这实际上只是一个选项,如果您确定一个带符号的长长长在目标机器上将是64位宽。
Edit: jorendorff's idea of defining a class for 64 bit numbers is appealing. Ideally you want to minimize the number of explicit class creations.
编辑:jorendorff为64位数字定义类的想法很有吸引力。理想情况下,您希望最小化显式类创建的数量。
Using c_longlong
, you could do something like this (note: Python 3.x only!):
使用c_longlong,您可以执行如下操作(注意:Python 3。x !):
from ctypes import c_longlong
class ll(int):
def __new__(cls, n):
return int.__new__(cls, c_longlong(n).value)
def __add__(self, other):
return ll(super().__add__(other))
def __radd__(self, other):
return ll(other.__add__(self))
def __sub__(self, other):
return ll(super().__sub__(other))
def __rsub__(self, other):
return ll(other.__sub__(self))
...
In this way the result of ll(2 ** 63) - 1
will indeed be 9223372036854775807
. This construction may result in a performance penalty though, so depending on what you want to do exactly, defining a class such as the above may not be worth it. When in doubt, use timeit
.
这样,ll(2 ** 63) - 1的结果确实是9223372036854775807。但是,这种构造可能会导致性能损失,因此根据您想要确切地做什么,定义一个类(如上面所示)可能不值得。当你不确定的时候,用时间。
#2
10
Can you use numpy? It has an int64 type that does exactly what you want.
你可以用numpy吗?它有一个int64类型,可以完全满足您的需求。
In [1]: import numpy
In [2]: numpy.int64(2**63-1)
Out[2]: 9223372036854775807
In [3]: numpy.int64(2**63-1)+1
Out[3]: -9223372036854775808
It's transparent to users, unlike the ctypes example, and it's coded in C so it'll be faster than rolling your own class in Python. Numpy may be bigger than the other solutions, but if you're doing numerical analysis, you will appreciate having it.
它对用户是透明的,不像ctypes示例,它是用C编写的,所以它比在Python中滚动自己的类要快。Numpy可能比其他解要大,但是如果你做数值分析,你会喜欢它。
#3
3
The quickest thing is probably to truncate the result to 64 bits yourself:
最快的方法可能是将结果截断为64位:
def to_int64(n):
n = n & ((1 << 64) - 1)
if n > (1 << 63) - 1:
n -= 1 << 64
return n
You can of course define your own numeric type that automatically does this every time you do any sort of arithmetic operation:
当然,你可以定义你自己的数字类型,每次你做任何算术运算时,它都会自动完成:
class Int64:
def __init__(self, n):
if isinstance(n, Int64):
n = n.val
self.val = to_int64(n)
def __add__(self, other):
return Int64(self.val + other)
def __radd__(self, other):
return Int64(other + self.val)
def __sub__(self, other):
return Int64(self.val - other)
...
but that is not particularly "quick" to implement.
但实施起来并不特别“迅速”。
#4
1
Have a look at the ctypes module, it is used to call foreign DLLs/libraries from python. There a some data types that correspond to C types, for example
看看ctypes模块,它用于从python调用外部dll /库。例如,有一些数据类型对应于C类型
class c_longlong
类c_longlong