BaoBao has a sequence a1,a2,...,an. He would like to find a subset S of {1,2,...,n} such that ∀i,j∈S, ai ⊕aj<min(ai ,aj) and ∣S∣ is maximum, where ⊕ means bitwise exclusive or.
Input
There are multiple test cases. The first line of input contains an integer T, indicating the number of test cases. For each test case:
The first line contains an integer n (1≤n≤100000), indicating the length of the sequence.
The second line contains n integers: a1 ,a2 ,...,an(1≤ai≤10的9次方), indicating the sequence.
It is guaranteed that the sum of n in all cases does not exceed 100000.
Output
For each test case, output an integer denoting the maximum size of S.
Sample Input
3
3
1 2 3
3
1 1 1
5
1 2323 534 534 5
Sample Output
2
3
2
题意,求在a数组中找出s子集,要求子集中任意两个数异或之后比这两个数都小,求最大子集里面元素的个数
可以知道,2进制的0和1 才是1,其他是0,要求两个数异或要更小,则必须两个数二进制的最高位要都是1,所以,只需要知道在每个长度的二进制区间中,存在多少个数字,数字最多的那个就是答案
#include<iostream>
#include<stdio.h>
#include<stdlib.h>
#include <iomanip>
#include<cmath>
#include<float.h>
#include<string.h>
#include<algorithm>
#include<vector>
#include<queue>
#define sf scanf
#define pf printf
#define scf(x) scanf("%d",&x)
#define scff(x,y) scanf("%d%d",&x,&y)
#define scfff(x,y,z) scanf("%d%d%d",&x,&y,&z)
#define prf(x) printf("%d\n",x)
#define mm(x,b) memset((x),(b),sizeof(x))
#define rep(i,a,n) for (int i=a;i<n;i++)
#define per(i,a,n) for (int i=a;i>=n;i--)
typedef long long ll;
const ll mod=1e9+7;
const double eps=1e-8;
const int inf=0x3f3f3f3f;
using namespace std;
const double pi=acos(-1.0);
const int N=1e5+10;
int a[N];
int upp[32];//区间上限
int doww[32];//区间下限
void init()
{
int x=2;
upp[0]=1;
doww[0]=1;
rep(i,1,32)
{
doww[i]=x;
upp[i-1]=x-1;
x*=2;
}
upp[31]=x-1;
}
int num[32];//存每个区间的数量
int main()
{
int re;scf(re);
init();
while(re--)
{
mm(num,0);
int n;scf(n);
rep(i,0,n)
{
scf(a[i]);
rep(j,0,32)
{
if(a[i]>=doww[j]&&a[i]<=upp[j])
{
num[j]++;
break;
}
}
}
int ans=0;
rep(i,0,32)
ans=max(ans,num[i]);
prf(ans);
}
return 0;
}