import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial)
def bias_variable(shape):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial)
def conv2d(x, w): x_narray = something operate on x w_narray = something operate on w result = my_conv_function(x_narray, w_narray, strides=[1, 1, 1, 1], padding='SAME') return result
def max_pool_2_2(x):
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
mnist = input_data.read_data_sets('MNIST_data', one_hot=True)
x = tf.placeholder("float", shape=[None, 784])
y_ = tf.placeholder("float", shape=[None, 10])
x_image = tf.reshape(x, [-1, 28, 28, 1])
w_conv1 = weight_variable([5, 5, 1, 32])
b_conv1 = bias_variable([32])
h_conv1 = tf.nn.relu(conv2d(x_image, w_conv1) + b_conv1)
h_pool1 = max_pool_2_2(h_conv1)
w_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(conv2d(h_pool1, w_conv2) + b_conv2)
h_pool2 = max_pool_2_2(h_conv2)
w_fc1 = weight_variable([7 * 7 * 64, 1024])
b_fc1 = bias_variable([1024])
h_pool2_flat = tf.reshape(h_pool2, [-1, 7 * 7 * 64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, w_fc1) + b_fc1)
keep_prob = tf.placeholder("float")
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
w_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])
y_conv = tf.nn.softmax(tf.matmul(h_fc1_drop, w_fc2) + b_fc2)
cross_entropy = -tf.reduce_sum(y_ * tf.log(y_conv))
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
sess = tf.Session()
with sess.as_default():
sess.run(tf.initialize_all_variables())
for i in range(10000):
batch = mnist.train.next_batch(50)
if i % 100 == 0:
train_accuracy = accuracy.eval(feed_dict={x: batch[0], y_: batch[1], keep_prob: 1.0})
print("step %d, train_accuracy %g" % (i, train_accuracy))
train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})
print("test accuracy %g" % accuracy.eval(feed_dict={x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}))
In my code, I implement a function called my_conv_function() to replace the tf.nn.conv2d function. My function need numpy.narray type parameters, but the x and y are all tensor type in tensorflow. How could I convert them to numpy.narray type?
在我的代码中,我实现了一个名为my_conv_function()的函数来替换tf.nn.conv2d函数。我的函数需要numpy.narray类型参数,但x和y都是张量流中的张量类型。我怎么能将它们转换为numpy.narray类型?
1 个解决方案
#1
1
sess.run([yourTensor])
or yourTensor.eval()
should return a numpy array that you need. I might be wrong, but I was under the impression that doing that too many times slows things down though, as essentially you have to run the graph every time?
sess.run([yourTensor])或yourTensor.eval()应返回您需要的numpy数组。我可能错了,但我的印象是这样做太多次会让事情变慢,因为基本上你每次都要运行图表?
#1
1
sess.run([yourTensor])
or yourTensor.eval()
should return a numpy array that you need. I might be wrong, but I was under the impression that doing that too many times slows things down though, as essentially you have to run the graph every time?
sess.run([yourTensor])或yourTensor.eval()应返回您需要的numpy数组。我可能错了,但我的印象是这样做太多次会让事情变慢,因为基本上你每次都要运行图表?