Codeforces 577B Modulo Sum

时间:2021-01-02 16:07:38

http://codeforces.com/problemset/problem/577/B

题意:有n个数,求有无一个子序列满足和是m的倍数

思路:用模下的背包做,发现n是十的六次方级别,但是有个神奇的性质,就是抽屉原理,当n大于等于m的时候,总会有sum[i]和sum[j]满足sum[i]%m=sum[j]%m,于是当n>=m的时候就可以特判掉,DP的复杂度就是O(n^2)的

总结:一定要记住,在模m下的前缀和这样的东西,一定要记得有抽屉原理!

然后这题的XX细节真是坑死我了

 #include<cstdio>
#include<cmath>
#include<algorithm>
#include<cstring>
#include<iostream>
int a[],f[],n,m,g[];
int read(){
int t=,f=;char ch=getchar();
while (ch<''||ch>''){if (ch=='-') f=-;ch=getchar();}
while (''<=ch&&ch<=''){t=t*+ch-'';ch=getchar();}
return t*f;
}
int main(){
n=read();m=read();
if (n>m){
printf("YES");
return ;
}
for (int i=;i<=n;i++) a[i]=read();
for (int i=;i<=n;i++){
for (int j=;j<=m;j++) g[j]=f[j];
for (int j=m-;j>=;j--)
if (f[j])
g[(a[i]%m+j)%m]=;
g[a[i]%m]=;
for (int j=;j<=m;j++) f[j]=g[j];
}
if (f[]) printf("YES");
else printf("NO");
return ;
}