It should not be so hard. I mean in C,
它不应该那么难。我的意思是在C,
int a[10];
is all you need. How to create an array of all zeros for a random size. I know the zeros() function in NumPy but there must be an easy way built-in, not another module.
是你所需要的全部。如何为随机大小创建全零的数组。我知道NumPy中的零()函数,但必须有一个简单的内置方法,而不是另一个模块。
7 个解决方案
#1
21
If you are not satisfied with lists (because they can contain anything and take up too much memory) you can use efficient array of integers:
如果您对列表不满意(因为它们可以包含任何内容并占用太多内存),您可以使用高效的整数数组:
import array
array.array('i')
See here
看这里
If you need to initialize it,
如果你需要初始化它,
a = array.array('i',(0 for i in range(0,10)))
#2
23
two ways:
两种方式:
x = [0] * 10
x = [0 for i in xrange(10)]
Edit: replaced range
by xrange
to avoid creating another list.
编辑:用xrange替换范围以避免创建另一个列表。
Also: as many others have noted including Pi and Ben James, this creates a list
, not a Python array. While a list is in many cases sufficient and easy enough, for performance critical uses (e.g. when duplicated in thousands of objects) you could look into python arrays. Look up the array
module, as explained in the other answers in this thread.
另外:正如许多其他人所说,包括Pi和Ben James,这会创建一个列表,而不是Python数组。虽然列表在许多情况下足够且容易,但对于性能关键用途(例如,当在数千个对象中重复时),您可以查看python数组。查找数组模块,如本主题中的其他答案中所述。
#3
6
>>> a = [0] * 10
>>> a
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
#4
6
Use the array module. With it you can store collections of the same type efficiently.
使用阵列模块。有了它,您可以有效地存储相同类型的集合。
>>> import array
>>> import itertools
>>> a = array_of_signed_ints = array.array("i", itertools.repeat(0, 10))
For more information - e.g. different types, look at the documentation of the array module. For up to 1 million entries this should feel pretty snappy. For 10 million entries my local machine thinks for 1.5 seconds.
有关更多信息 - 例如不同类型,请查看阵列模块的文档。对于多达100万个条目,这应该感觉非常活泼。对于1000万条目我的本地机器认为1.5秒。
The second parameter to array.array is a generator, which constructs the defined sequence as it is read. This way, the array module can consume the zeros one-by-one, but the generator only uses constant memory. This generator does not get bigger (memory-wise) if the sequence gets longer. The array will grow of course, but that should be obvious.
array.array的第二个参数是一个生成器,它在读取时构造定义的序列。这样,阵列模块可以逐个消耗零,但生成器只使用常量内存。如果序列变长,这个生成器不会变大(内存方面)。阵列当然会增长,但这应该是显而易见的。
You use it just like a list:
你就像一个列表一样使用它:
>>> a.append(1)
>>> a.extend([1, 2, 3])
>>> a[-4:]
array('i', [1, 1, 2, 3])
>>> len(a)
14
...or simply convert it to a list:
...或者只是将其转换为列表:
>>> l = list(a)
>>> len(l)
14
Surprisingly
出奇
>>> a = [0] * 10000000
is faster at construction than the array method. Go figure! :)
在构造上比阵列方法更快。去搞清楚! :)
#5
1
a = 10 * [0]
gives you an array of length 10, filled with zeroes.
给你一个长度为10的数组,用零填充。
#6
1
import random
def random_zeroes(max_size):
"Create a list of zeros for a random size (up to max_size)."
a = []
for i in xrange(random.randrange(max_size)):
a += [0]
Use range
instead if you are using Python 3.x.
如果您使用的是Python 3.x,请使用范围。
#7
1
If you need to initialize an array fast, you might do it by blocks instead of with a generator initializer, and it's going to be much faster. Creating a list by [0]*count
is just as fast, still.
如果你需要快速初始化一个数组,你可以用块而不是生成器初始化器来完成它,它会更快。按[0] *计数创建列表同样快。
import array
def zerofill(arr, count):
count *= arr.itemsize
blocksize = 1024
blocks, rest = divmod(count, blocksize)
for _ in xrange(blocks):
arr.fromstring("\x00"*blocksize)
arr.fromstring("\x00"*rest)
def test_zerofill(count):
iarr = array.array('i')
zerofill(iarr, count)
assert len(iarr) == count
def test_generator(count):
iarr = array.array('i', (0 for _ in xrange(count)))
assert len(iarr) == count
def test_list(count):
L = [0]*count
assert len(L) == count
if __name__ == '__main__':
import timeit
c = 100000
n = 10
print timeit.Timer("test(c)", "from __main__ import c, test_zerofill as test").repeat(number=n)
print timeit.Timer("test(c)", "from __main__ import c, test_generator as test").repeat(number=n)
print timeit.Timer("test(c)", "from __main__ import c, test_list as test").repeat(number=n)
Results:
结果:
(array in blocks) [0.022809982299804688, 0.014942169189453125, 0.014089107513427734]
(array with generator) [1.1884641647338867, 1.1728270053863525, 1.1622772216796875]
(list) [0.023866891860961914, 0.035660028457641602, 0.023386955261230469]
#1
21
If you are not satisfied with lists (because they can contain anything and take up too much memory) you can use efficient array of integers:
如果您对列表不满意(因为它们可以包含任何内容并占用太多内存),您可以使用高效的整数数组:
import array
array.array('i')
See here
看这里
If you need to initialize it,
如果你需要初始化它,
a = array.array('i',(0 for i in range(0,10)))
#2
23
two ways:
两种方式:
x = [0] * 10
x = [0 for i in xrange(10)]
Edit: replaced range
by xrange
to avoid creating another list.
编辑:用xrange替换范围以避免创建另一个列表。
Also: as many others have noted including Pi and Ben James, this creates a list
, not a Python array. While a list is in many cases sufficient and easy enough, for performance critical uses (e.g. when duplicated in thousands of objects) you could look into python arrays. Look up the array
module, as explained in the other answers in this thread.
另外:正如许多其他人所说,包括Pi和Ben James,这会创建一个列表,而不是Python数组。虽然列表在许多情况下足够且容易,但对于性能关键用途(例如,当在数千个对象中重复时),您可以查看python数组。查找数组模块,如本主题中的其他答案中所述。
#3
6
>>> a = [0] * 10
>>> a
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
#4
6
Use the array module. With it you can store collections of the same type efficiently.
使用阵列模块。有了它,您可以有效地存储相同类型的集合。
>>> import array
>>> import itertools
>>> a = array_of_signed_ints = array.array("i", itertools.repeat(0, 10))
For more information - e.g. different types, look at the documentation of the array module. For up to 1 million entries this should feel pretty snappy. For 10 million entries my local machine thinks for 1.5 seconds.
有关更多信息 - 例如不同类型,请查看阵列模块的文档。对于多达100万个条目,这应该感觉非常活泼。对于1000万条目我的本地机器认为1.5秒。
The second parameter to array.array is a generator, which constructs the defined sequence as it is read. This way, the array module can consume the zeros one-by-one, but the generator only uses constant memory. This generator does not get bigger (memory-wise) if the sequence gets longer. The array will grow of course, but that should be obvious.
array.array的第二个参数是一个生成器,它在读取时构造定义的序列。这样,阵列模块可以逐个消耗零,但生成器只使用常量内存。如果序列变长,这个生成器不会变大(内存方面)。阵列当然会增长,但这应该是显而易见的。
You use it just like a list:
你就像一个列表一样使用它:
>>> a.append(1)
>>> a.extend([1, 2, 3])
>>> a[-4:]
array('i', [1, 1, 2, 3])
>>> len(a)
14
...or simply convert it to a list:
...或者只是将其转换为列表:
>>> l = list(a)
>>> len(l)
14
Surprisingly
出奇
>>> a = [0] * 10000000
is faster at construction than the array method. Go figure! :)
在构造上比阵列方法更快。去搞清楚! :)
#5
1
a = 10 * [0]
gives you an array of length 10, filled with zeroes.
给你一个长度为10的数组,用零填充。
#6
1
import random
def random_zeroes(max_size):
"Create a list of zeros for a random size (up to max_size)."
a = []
for i in xrange(random.randrange(max_size)):
a += [0]
Use range
instead if you are using Python 3.x.
如果您使用的是Python 3.x,请使用范围。
#7
1
If you need to initialize an array fast, you might do it by blocks instead of with a generator initializer, and it's going to be much faster. Creating a list by [0]*count
is just as fast, still.
如果你需要快速初始化一个数组,你可以用块而不是生成器初始化器来完成它,它会更快。按[0] *计数创建列表同样快。
import array
def zerofill(arr, count):
count *= arr.itemsize
blocksize = 1024
blocks, rest = divmod(count, blocksize)
for _ in xrange(blocks):
arr.fromstring("\x00"*blocksize)
arr.fromstring("\x00"*rest)
def test_zerofill(count):
iarr = array.array('i')
zerofill(iarr, count)
assert len(iarr) == count
def test_generator(count):
iarr = array.array('i', (0 for _ in xrange(count)))
assert len(iarr) == count
def test_list(count):
L = [0]*count
assert len(L) == count
if __name__ == '__main__':
import timeit
c = 100000
n = 10
print timeit.Timer("test(c)", "from __main__ import c, test_zerofill as test").repeat(number=n)
print timeit.Timer("test(c)", "from __main__ import c, test_generator as test").repeat(number=n)
print timeit.Timer("test(c)", "from __main__ import c, test_list as test").repeat(number=n)
Results:
结果:
(array in blocks) [0.022809982299804688, 0.014942169189453125, 0.014089107513427734]
(array with generator) [1.1884641647338867, 1.1728270053863525, 1.1622772216796875]
(list) [0.023866891860961914, 0.035660028457641602, 0.023386955261230469]