POJ 2452 Sticks Problem

时间:2021-04-09 15:57:17

RMQ+二分。。。。
枚举 i  ,找比 i 小的第一个元素,再找之间的第一个最大元素。。。。。

                  Sticks Problem
Time Limit: 6000MS   Memory Limit: 65536K
Total Submissions: 9338   Accepted: 2443

Description

Xuanxuan has n sticks of different length. One day, she puts all her sticks in a line, represented by S1, S2, S3, ...Sn. After measuring the length of each stick Sk (1 <= k <= n), she finds that for some sticks Si and Sj (1<= i < j <= n), each stick placed between Si and Sj is longer than Si but shorter than Sj.

Now given the length of S1, S2, S3, …Sn, you are required to find the maximum value j - i.

Input

The input contains multiple test cases. Each case contains two lines. 
Line 1: a single integer n (n <= 50000), indicating the number of sticks. 
Line 2: n different positive integers (not larger than 100000), indicating the length of each stick in order.

Output

Output the maximum value j - i in a single line. If there is no such i and j, just output -1.

Sample Input

4
5 4 3 6
4
6 5 4 3

Sample Output

1
-1

Source

POJ Monthly,static
 
 
 #include <iostream>
#include <cstdio>
#include <cstring> using namespace std; int dp_max[][],dp_min[][],a[],n; int _max(int l,int r)
{
if(a[l]>=a[r]) return l;
else return r;
} int _min(int l,int r)
{
if(a[l]<=a[r]) return l;
else return r;
} void Init()
{
for(int i=;i<=n;i++)
dp_max[i][]=dp_min[i][]=i;
for(int j=;(<<j)<=n;j++)
{
for(int i=;i+(<<j)-<=n;i++)
{
int m=i+(<<(j-));
dp_max[i][j]=_max(dp_max[i][j-],dp_max[m][j-]);
dp_min[i][j]=_min(dp_min[i][j-],dp_min[m][j-]);
}
}
} int rmq_min(int L,int R)
{
int k=;
while(L+(<<k)-<=R) k++; k--;
return _min(dp_min[L][k],dp_min[R-(<<k)+][k]);
} int rmq_max(int L,int R)
{
int k=;
while(L+(<<k)-<=R) k++; k--;
return _max(dp_max[L][k],dp_max[R-(<<k)+][k]);
} int main()
{
while(scanf("%d",&n)!=EOF)
{
for(int i=;i<=n;i++)
scanf("%d",a+i);
Init();
int ans=,r,k;
for(int i=;i+ans<n;i++)
{
int low=i+,high=n,mid;
while(low<=high)
{
if(low==high) break;
mid=(low+high)>>;
if(a[i]<a[rmq_min(low,mid)])
low=mid+;
else
high=mid;
}
r=low;
k=rmq_max(i,r);
if(a[i]<a[k])
ans=max(ans,k-i);
}
if(ans==) printf("-1\n");
else printf("%d\n",ans);
}
return ;
}