https://vjudge.net/problem/TopCoder-12891
暴力想法是:dp[i][s1][s2]前i个,第一个集合xor是s1,第二个集合xor是s2方案数O(n^3)
有xor
不妨按位考虑
枚举两个集合xor的LCP长度L
考虑从高到低前L位相同,第L+1位xor(X)=0,xor(Y)=1的方案数
剩下的低位就随便选择了
f[i][s][0/1][0/1]表示前i个数,前L位高位的xor和是s,第L+1位分别是0/1,0/1的方案数
每一个合法的方案都会被枚举到恰好一次。
复杂度:O(logn*n*(n/logn)=n^2)
代码:
(Topcoder还要class。。。)
#include<bits/stdc++.h>
#define reg register int
#define il inline
#define numb (ch^'0')
using namespace std;
typedef long long ll;
il void rd(int &x){
char ch;x=;bool fl=false;
while(!isdigit(ch=getchar()))(ch=='-')&&(fl=true);
for(x=numb;isdigit(ch=getchar());x=x*+numb);
(fl==true)&&(x=-x);
}
const int mod=1e9+;
const int N=;
int n,m;
int ans=;
int f[N][][][];
int mo(int x,int y){
return x+y>=mod?x+y-mod:x+y;
}
class WinterAndSnowmen {
public:
int getNumber(int n, int m) { int U=max(n,m);
for(reg p=;p>=;--p){
memset(f,,sizeof f);
f[][][][]=;
for(reg i=;i<U;++i){//calc i+1
for(reg s=;s<(<<(-p));++s){
for(reg l1=;l1<=;++l1){
for(reg l2=;l2<=;++l2){
int num=i+;
f[i+][s][l1][l2]=mo(f[i+][s][l1][l2],f[i][s][l1][l2]);
if(i+<=n)f[i+][s^(num>>(p+))][l1^((num>>p)&)][l2]=mo(f[i+][s^(num>>(p+))][l1^((num>>p)&)][l2],f[i][s][l1][l2]);
if(i+<=m)f[i+][s^(num>>(p+))][l1][l2^((num>>p)&)]=mo(f[i+][s^(num>>(p+))][l1][l2^((num>>p)&)],f[i][s][l1][l2]);
}
}
}
}
ans=mo(ans,f[U][][][]);
}
return ans;
}
};