I have a JSON of the following structure:
我有如下结构的JSON:
{
"a": "a_1",
"b": "b_1",
"c": [{
"d": "d_1",
"e": "e_1",
"f": [],
"g": "g_1",
"h": "h_1"
}, {
"d": "d_2",
"e": "e_2",
"f": [],
"g": "g_2",
"h": "h_2"
}, {
"d": "d_3",
"e": "e_3",
"f": [{
"i": "i_1",
"j": "j_1",
"k": "k_1",
"l": "l_1",
"m": []
}, {
"i": "i_2",
"j": "j_2",
"k": "k_2",
"l": "l_2",
"m": [{
"n": "n_1",
"o": "o_1",
"p": "p_1",
"q": "q_1"
}]
}],
"g": "g_3",
"h": "h_3"
}]
}
And I want to convert it into pandas data frame of the following type:
我想把它转换成熊猫的数据框架如下:
How can I achieve that?
我怎么才能做到呢?
Following is my attempt but the direction is completely diff.
以下是我的尝试,但方向完全不同。
code:
代码:
from pandas.io.json import json_normalize
def flatten_json(y):
out = {}
def flatten(x, name=''):
if type(x) is dict:
for a in x:
flatten(x[a], name + a + '_')
elif type(x) is list:
i = 0
for a in x:
flatten(a, name + str(i) + '_')
i += 1
else:
out[name[:-1]] = x
flatten(y)
return out
sample_object = { "a": "a_1", "b": "b_1", "c": [{ "d": "d_1", "e": "e_1", "f": [], "g": "g_1", "h": "h_1" }, { "d": "d_2", "e": "e_2", "f": [], "g": "g_2", "h": "h_2" }, { "d": "d_3", "e": "e_3", "f": [{ "i": "i_1", "j": "j_1", "k": "k_1", "l": "l_1", "m": [] }, { "i": "i_2", "j": "j_2", "k": "k_2", "l": "l_2", "m": [{ "n": "n_1", "o": "o_1", "p": "p_1", "q": "q_1" }] }], "g": "g_3", "h": "h_3" }] }
intermediate_json = flatten_json(sample_object)
flattened_df = json_normalize(intermediate_json)
transposed_df = flattened_df.T
print(transposed_df.to_string())
OUTPUT:
输出:
0
a a_1
b b_1
c_0_d d_1
c_0_e e_1
c_0_g g_1
c_0_h h_1
c_1_d d_2
c_1_e e_2
c_1_g g_2
c_1_h h_2
c_2_d d_3
c_2_e e_3
c_2_f_0_i i_1
c_2_f_0_j j_1
c_2_f_0_k k_1
c_2_f_0_l l_1
c_2_f_1_i i_2
c_2_f_1_j j_2
c_2_f_1_k k_2
c_2_f_1_l l_2
c_2_f_1_m_0_n n_1
c_2_f_1_m_0_o o_1
c_2_f_1_m_0_p p_1
c_2_f_1_m_0_q q_1
c_2_g g_3
c_2_h h_3
1 个解决方案
#1
0
Before Reading
在阅读之前
- This do the Job as presented in the Question, if some additionnal specificities, please communicate it.
- 这就是问题中提到的工作,如果有什么特别之处,请与我们联系。
- This surely can be improved, take it as a possible solution to your problem
- 这肯定是可以改进的,把它当作解决你问题的一个可能的方法
- Please note that the key to solve your problem leads in Looping through nested dictionary which can be done with recursive functions.
- 请注意,解决问题的关键在于通过嵌套字典进行循环,而嵌套字典可以使用递归函数完成。
Solution
解决方案
With _dict
your nested dictionary you can do a recursive function and some tricks to achieve your goal:
有了_dict你的嵌套字典,你可以做一个递归函数和一些技巧来实现你的目标:
I first write a function iterate_dict
that recursively read your dictionary and store the results into a new dict
where keys/values are your final pd.Dataframe
columns content:
我首先编写一个函数iterate_dict,它递归地读取你的字典,并将结果存储到一个新的命令中,其中键/值是你的最终pd。Dataframe列内容:
def iterate_dict(_dict, _fdict,level=0):
for k in _dict.keys(): #Iterate over keys of a dict
#If value is a string update _fdict
if isinstance(_dict[k],str):
#If first seen, initialize your dict
if not k in _fdict.keys():
_fdict[k] = [-1]*(level-1) #Trick to shift columns
#Append the value
_fdict[k].append(_dict[k])
#If a list
if isinstance(_dict[k],list):
if not k in _fdict.keys(): #If first seen key initialize
_fdict[k] = [-1]*(level) #Same previous trick
#Extend with required range (0, 1, 2 ...)
_fdict[k].extend([i for i in range(len(_dict[k]))])
else:
if len(_dict[k]) > 0:
_start = 0 if len(_fdict[k]) == 0 else (int(_fdict[k][-1])+1)
_fdict[k].extend([i for i in range(_start,_start+len(_dict[k]))]) #Extend
for _d in _dict[k]: #If value of key is a list recall iterate_dict
iterate_dict(_d,_fdict,level=level+1)
And another function, to_series
, to transform the values of the future columns into pd.Series
replacing previous int
equals to -1
into np.nan
:
另一个函数to_series将未来列的值转换为pd。将之前的int数替换为-1的级数:
def to_series(_fvalues):
if _fvalues[0] == -1:
_fvalues.insert(0,-1) #Trick to shift again
return pd.Series(_fvalues).replace(-1,np.nan) #Replace -1 with nan in case
Then use it like this:
然后这样使用:
_fdict = dict() #The future columns content
iterate_dict(_dict,_fdict) #Do the Job
print(_fdict)
{'a': ['a_1'],
'b': ['b_1'],
'c': [0, 1, 2],
'd': ['d_1', 'd_2', 'd_3'],
'e': ['e_1', 'e_2', 'e_3'],
'f': [-1, 0, 1],
'g': ['g_1', 'g_2', 'g_3'],
'h': ['h_1', 'h_2', 'h_3'],
'i': [-1, 'i_1', 'i_2'],
'j': [-1, 'j_1', 'j_2'],
'k': [-1, 'k_1', 'k_2'],
'l': [-1, 'l_1', 'l_2'],
'm': [-1, -1, 0],
'n': [-1, -1, 'n_1'],
'o': [-1, -1, 'o_1'],
'p': [-1, -1, 'p_1'],
'q': [-1, -1, 'q_1']}
#Here you can see a shift is required, use your custom to_series() function
Then create your pd.Dataframe
:
然后创建你的pd.Dataframe:
df = pd.DataFrame(dict([ (k,to_series(v)) for k,v in _fdict.items() ])).ffill()
#Don't forget to do a forward fillna as needed
print(df)
a b c d e f g h i j k l m n o \
0 a_1 b_1 0.0 d_1 e_1 NaN g_1 h_1 NaN NaN NaN NaN NaN NaN NaN
1 a_1 b_1 1.0 d_2 e_2 NaN g_2 h_2 NaN NaN NaN NaN NaN NaN NaN
2 a_1 b_1 2.0 d_3 e_3 0.0 g_3 h_3 i_1 j_1 k_1 l_1 NaN NaN NaN
3 a_1 b_1 2.0 d_3 e_3 1.0 g_3 h_3 i_2 j_2 k_2 l_2 0.0 n_1 o_1
p q
0 NaN NaN
1 NaN NaN
2 NaN NaN
3 p_1 q_1
#1
0
Before Reading
在阅读之前
- This do the Job as presented in the Question, if some additionnal specificities, please communicate it.
- 这就是问题中提到的工作,如果有什么特别之处,请与我们联系。
- This surely can be improved, take it as a possible solution to your problem
- 这肯定是可以改进的,把它当作解决你问题的一个可能的方法
- Please note that the key to solve your problem leads in Looping through nested dictionary which can be done with recursive functions.
- 请注意,解决问题的关键在于通过嵌套字典进行循环,而嵌套字典可以使用递归函数完成。
Solution
解决方案
With _dict
your nested dictionary you can do a recursive function and some tricks to achieve your goal:
有了_dict你的嵌套字典,你可以做一个递归函数和一些技巧来实现你的目标:
I first write a function iterate_dict
that recursively read your dictionary and store the results into a new dict
where keys/values are your final pd.Dataframe
columns content:
我首先编写一个函数iterate_dict,它递归地读取你的字典,并将结果存储到一个新的命令中,其中键/值是你的最终pd。Dataframe列内容:
def iterate_dict(_dict, _fdict,level=0):
for k in _dict.keys(): #Iterate over keys of a dict
#If value is a string update _fdict
if isinstance(_dict[k],str):
#If first seen, initialize your dict
if not k in _fdict.keys():
_fdict[k] = [-1]*(level-1) #Trick to shift columns
#Append the value
_fdict[k].append(_dict[k])
#If a list
if isinstance(_dict[k],list):
if not k in _fdict.keys(): #If first seen key initialize
_fdict[k] = [-1]*(level) #Same previous trick
#Extend with required range (0, 1, 2 ...)
_fdict[k].extend([i for i in range(len(_dict[k]))])
else:
if len(_dict[k]) > 0:
_start = 0 if len(_fdict[k]) == 0 else (int(_fdict[k][-1])+1)
_fdict[k].extend([i for i in range(_start,_start+len(_dict[k]))]) #Extend
for _d in _dict[k]: #If value of key is a list recall iterate_dict
iterate_dict(_d,_fdict,level=level+1)
And another function, to_series
, to transform the values of the future columns into pd.Series
replacing previous int
equals to -1
into np.nan
:
另一个函数to_series将未来列的值转换为pd。将之前的int数替换为-1的级数:
def to_series(_fvalues):
if _fvalues[0] == -1:
_fvalues.insert(0,-1) #Trick to shift again
return pd.Series(_fvalues).replace(-1,np.nan) #Replace -1 with nan in case
Then use it like this:
然后这样使用:
_fdict = dict() #The future columns content
iterate_dict(_dict,_fdict) #Do the Job
print(_fdict)
{'a': ['a_1'],
'b': ['b_1'],
'c': [0, 1, 2],
'd': ['d_1', 'd_2', 'd_3'],
'e': ['e_1', 'e_2', 'e_3'],
'f': [-1, 0, 1],
'g': ['g_1', 'g_2', 'g_3'],
'h': ['h_1', 'h_2', 'h_3'],
'i': [-1, 'i_1', 'i_2'],
'j': [-1, 'j_1', 'j_2'],
'k': [-1, 'k_1', 'k_2'],
'l': [-1, 'l_1', 'l_2'],
'm': [-1, -1, 0],
'n': [-1, -1, 'n_1'],
'o': [-1, -1, 'o_1'],
'p': [-1, -1, 'p_1'],
'q': [-1, -1, 'q_1']}
#Here you can see a shift is required, use your custom to_series() function
Then create your pd.Dataframe
:
然后创建你的pd.Dataframe:
df = pd.DataFrame(dict([ (k,to_series(v)) for k,v in _fdict.items() ])).ffill()
#Don't forget to do a forward fillna as needed
print(df)
a b c d e f g h i j k l m n o \
0 a_1 b_1 0.0 d_1 e_1 NaN g_1 h_1 NaN NaN NaN NaN NaN NaN NaN
1 a_1 b_1 1.0 d_2 e_2 NaN g_2 h_2 NaN NaN NaN NaN NaN NaN NaN
2 a_1 b_1 2.0 d_3 e_3 0.0 g_3 h_3 i_1 j_1 k_1 l_1 NaN NaN NaN
3 a_1 b_1 2.0 d_3 e_3 1.0 g_3 h_3 i_2 j_2 k_2 l_2 0.0 n_1 o_1
p q
0 NaN NaN
1 NaN NaN
2 NaN NaN
3 p_1 q_1