I have a DataFrame with the following columns and no duplicates:
我有一个包含以下列的DataFrame,没有重复项:
['region', 'type', 'name', 'value']
that can be seen as a hierarchy as follows
可以看作层次结构如下
grouped = df.groupby(['region','type', 'name'])
I would like to serialize this hierarchy as a JSON object.
我想将此层次结构序列化为JSON对象。
If anyone is interested, the motivation behind this is to eventually put together a visualization like this one which requires a JSON
file.
如果有人感兴趣,那么这背后的动机是最终将像这样的可视化组合在一起,这需要一个JSON文件。
To do so, I need to convert grouped
into the following:
为此,我需要将分组转换为以下内容:
new_data['children'][i]['name'] = region
new_data['children'][i]['children'][j]['name'] = type
new_data['children'][i]['children'][j]'children'][k]['name'] = name
new_data['children'][i]['children'][j]'children'][k]['size'] = value
...
where region
, type
, name
correspond to different levels of the hierarchy (indexed by i
, j
and k
)
其中region,type,name对应于层次结构的不同级别(由i,j和k索引)
Is there an easy way in Pandas/Python to do this?
在Pandas / Python中有一种简单的方法可以做到这一点吗?
2 个解决方案
#1
3
Something along these lines might get you there.
这些方面的东西可能会让你到那里。
from collections import defaultdict
tree = lambda: defaultdict(tree) # a recursive defaultdict
d = tree()
for _, (region, type, name, value) in df.iterrows():
d['children'][region]['name'] = region
...
json.dumps(d)
A vectorized solution would be better, and maybe something that takes advantage of the speed of groupby, but I can't think of such a solution.
矢量化解决方案会更好,也许可以利用groupby的速度,但我想不出这样的解决方案。
Also take a look at df.groupby(...).groups
, which return a dict.
另请查看df.groupby(...)。groups,它们返回一个dict。
See also this answer.
另见这个答案。
#2
1
Here's another script to take a pandas df and output a flare.json file: https://github.com/andrewheekin/csv2flare.json
这是另一个获取pandas df并输出flare.json文件的脚本:https://github.com/andrewheekin/csv2flare.json
#1
3
Something along these lines might get you there.
这些方面的东西可能会让你到那里。
from collections import defaultdict
tree = lambda: defaultdict(tree) # a recursive defaultdict
d = tree()
for _, (region, type, name, value) in df.iterrows():
d['children'][region]['name'] = region
...
json.dumps(d)
A vectorized solution would be better, and maybe something that takes advantage of the speed of groupby, but I can't think of such a solution.
矢量化解决方案会更好,也许可以利用groupby的速度,但我想不出这样的解决方案。
Also take a look at df.groupby(...).groups
, which return a dict.
另请查看df.groupby(...)。groups,它们返回一个dict。
See also this answer.
另见这个答案。
#2
1
Here's another script to take a pandas df and output a flare.json file: https://github.com/andrewheekin/csv2flare.json
这是另一个获取pandas df并输出flare.json文件的脚本:https://github.com/andrewheekin/csv2flare.json