I want to split the line when the variable contain different YEAR, also split the col : "Price" with evenly divided by the numbers of date appear --> count (" ; ") +1
我想在变量包含不同的YEAR时拆分行,也拆分col:“Price”均匀地除以显示的日期数 - > count(“;”)+1
There is a table with the variable that is not yet be splitted.
有一个表中包含尚未拆分的变量。
# Dataset call df
Price Date
500 2016-01-01
400 2016-01-03;2016-01-09
1000 2016-01-04;2017-09-01;2017-08-10;2018-01-01
25 2016-01-04;2017-09-01
304 2015-01-02
238 2018-01-02;2018-02-02
Desire Outlook
# Targeted df
Price Date
500 2016-01-01
400 2016-01-03;2016-01-09
250 2016-01-04
250 2017-09-01
250 2017-08-10
250 2018-01-01
12.5 2016-01-04
12.5 2017-09-01
304 2015-01-02
238 2018-01-02;2018-02-02
Once the variable contains different year is defined , below is the operation have to do .(It is just a example .)
一旦变量包含不同的年份定义,下面是操作必须做的。(这只是一个例子。)
mutate(Price = ifelse(DIFFERENT_DATE_ROW,
as.numeric(Price) / (str_count(Date,";")+1),
as.numeric(Price)),
Date = ifelse(DIFFERENT_DATE_ROW,
strsplit(as.character(Date),";"),
Date)) %>%
unnest()
I meet some constraints that cannot use dplyr's function "if_else"
because else NO operation cannot be recognized .Only ifelse work properly.
我遇到了一些不能使用dplyr函数“if_else”的约束,因为否则无法识别NO操作。只有ifelse正常工作。
How to find out there is differences of the year in one variables to PROVOKE the split line & split price calculations ?
如何找出一个变量中的年份差异来PROVOKE分割线和拆分价格计算?
so far the operation to split the element like
到目前为止,拆分元素的操作就像
unlist(lapply(unlist(strsplit(df1$noFDate[8],";")),FUN = year))
cannot solve the problem.
无法解决问题。
I am beginner of coding , please feel free to change all operation above with considering the real data have over 2 million rows and 50 cols.
我是编码的初学者,请考虑真实数据超过200万行和50列,请随意更改上述所有操作。
2 个解决方案
#1
2
This might not be the most efficient one but can be used to get the required answer.
这可能不是最有效的,但可以用来获得所需的答案。
#Get the row indices which we need to separate
inds <- sapply(strsplit(df$Date, ";"), function(x)
#Format the date into year and count number of unique values
#Return TRUE if number of unique values is greater than 1
length(unique(format(as.Date(x), "%Y"))) > 1
)
library(tidyverse)
library(stringr)
#Select those indices
df[inds, ] %>%
# divide the price by number of dates in that row
mutate(Price = Price / (str_count(Date,";") + 1)) %>%
# separate `;` delimited values in separate rows
separate_rows(Date, sep = ";") %>%
# bind the remaining rows as it is
bind_rows(df[!inds,])
# Price Date
#1 250.0 2016-01-04
#2 250.0 2017-09-01
#3 250.0 2017-08-10
#4 250.0 2018-01-01
#5 12.5 2016-01-04
#6 12.5 2017-09-01
#7 500.0 2016-01-01
#8 400.0 2016-01-03;2016-01-09
#9 304.0 2015-01-02
#10 238.0 2018-01-02;2018-02-02
#2
1
A bit cumbersome but you could do:
有点麻烦,但你可以这样做:
d_new = lapply(1:nrow(dat),function(x) {
a = dat[x,]
b = unlist(strsplit(as.character(a$Date),";"))
l = length(b)
if (l==1) check = 0 else check = ifelse(var(as.numeric(strftime(b,"%Y")))==0,0,1)
if (check==0) {
a
} else {
data.frame(Date = b, Price = rep(a$Price / l,l))
}
})
do.call(rbind,d_new)
#1
2
This might not be the most efficient one but can be used to get the required answer.
这可能不是最有效的,但可以用来获得所需的答案。
#Get the row indices which we need to separate
inds <- sapply(strsplit(df$Date, ";"), function(x)
#Format the date into year and count number of unique values
#Return TRUE if number of unique values is greater than 1
length(unique(format(as.Date(x), "%Y"))) > 1
)
library(tidyverse)
library(stringr)
#Select those indices
df[inds, ] %>%
# divide the price by number of dates in that row
mutate(Price = Price / (str_count(Date,";") + 1)) %>%
# separate `;` delimited values in separate rows
separate_rows(Date, sep = ";") %>%
# bind the remaining rows as it is
bind_rows(df[!inds,])
# Price Date
#1 250.0 2016-01-04
#2 250.0 2017-09-01
#3 250.0 2017-08-10
#4 250.0 2018-01-01
#5 12.5 2016-01-04
#6 12.5 2017-09-01
#7 500.0 2016-01-01
#8 400.0 2016-01-03;2016-01-09
#9 304.0 2015-01-02
#10 238.0 2018-01-02;2018-02-02
#2
1
A bit cumbersome but you could do:
有点麻烦,但你可以这样做:
d_new = lapply(1:nrow(dat),function(x) {
a = dat[x,]
b = unlist(strsplit(as.character(a$Date),";"))
l = length(b)
if (l==1) check = 0 else check = ifelse(var(as.numeric(strftime(b,"%Y")))==0,0,1)
if (check==0) {
a
} else {
data.frame(Date = b, Price = rep(a$Price / l,l))
}
})
do.call(rbind,d_new)