floyd的松弛部分是 g[i][j] = min(g[i][j], g[i][k] + g[k][j]);也就是说,g[i][j] <= g[i][k] + g[k][j] (存在i->j, i->k, k->j的边)。
那么这个题很明显要逆向思考floyd算法。对于新图i,j,k,如果g[i][j] > g[i][k] + g[k][j],那么肯定是不合理的。而如果g[i][j] = g[i][k] + g[k][j],明显i->j的边可以删去。
//#pragma comment(linker, "/STACK:1024000000,1024000000") #include<algorithm> #include<iostream> #include<cstring> #include<fstream> #include<sstream> #include<vector> #include<string> #include<cstdio> #include<bitset> #include<queue> #include<stack> #include<cmath> #include<map> #include<set> #define FF(i, a, b) for(int i=a; i<b; i++) #define FD(i, a, b) for(int i=a; i>=b; i--) #define REP(i, n) for(int i=0; i<n; i++) #define CLR(a, b) memset(a, b, sizeof(a)) #define debug puts("**debug**") #define LL long long #define PB push_back #define MP make_pair #define eps 1e-10 using namespace std; const int maxn = 111; int vis[maxn][maxn], g[maxn][maxn]; int n, T; int reFloyd() { int ret = n*(n-1); REP(k, n) REP(i, n) REP(j, n) { if(!vis[i][j] || !vis[i][k] || !vis[k][j]) continue; else if(g[i][j] > g[i][k] + g[k][j]) return -1; else if(g[i][j] == g[i][k] + g[k][j]) { vis[i][j] = 0; ret--; } } return ret; } int main() { scanf("%d", &T); FF(kase, 1, T+1) { scanf("%d", &n); REP(i, n) REP(j, n) { scanf("%d", &g[i][j]); vis[i][j] = i == j ? 0 : 1; } printf("Case %d: ", kase); int ans = reFloyd(); if(ans == -1) puts("impossible"); else printf("%d\n", ans); } return 0; }