I'm building an example Dataflow pipeline, mainly based on the code at https://cloud.google.com/dataflow/java-sdk/combine
我正在构建一个示例Dataflow管道,主要基于https://cloud.google.com/dataflow/java-sdk/combine上的代码
But when I run my code, I experience the following exception:
但是当我运行我的代码时,我遇到以下异常:
Exception in thread "main" java.lang.IllegalArgumentException: unable to serialize com.google.cloud.dataflow.sdk.runners.DirectPipelineRunner$TestCombineDoFn@139982de at com.google.cloud.dataflow.sdk.util.SerializableUtils.serializeToByteArray(SerializableUtils.java:51) at com.google.cloud.dataflow.sdk.util.SerializableUtils.ensureSerializable(SerializableUtils.java:81) at com.google.cloud.dataflow.sdk.runners.DirectPipelineRunner$Evaluator.ensureSerializable(DirectPipelineRunner.java:784) at com.google.cloud.dataflow.sdk.transforms.ParDo.evaluateHelper(ParDo.java:1025) at com.google.cloud.dataflow.sdk.transforms.ParDo.evaluateSingleHelper(ParDo.java:963) at com.google.cloud.dataflow.sdk.transforms.ParDo.access$000(ParDo.java:441) at com.google.cloud.dataflow.sdk.transforms.ParDo$1.evaluate(ParDo.java:951) at com.google.cloud.dataflow.sdk.transforms.ParDo$1.evaluate(ParDo.java:946) at com.google.cloud.dataflow.sdk.runners.DirectPipelineRunner$Evaluator.visitTransform(DirectPipelineRunner.java:611) at com.google.cloud.dataflow.sdk.runners.TransformTreeNode.visit(TransformTreeNode.java:200) at com.google.cloud.dataflow.sdk.runners.TransformTreeNode.visit(TransformTreeNode.java:196) at com.google.cloud.dataflow.sdk.runners.TransformTreeNode.visit(TransformTreeNode.java:196) at com.google.cloud.dataflow.sdk.runners.TransformTreeNode.visit(TransformTreeNode.java:196) at com.google.cloud.dataflow.sdk.runners.TransformTreeNode.visit(TransformTreeNode.java:196) at com.google.cloud.dataflow.sdk.runners.TransformHierarchy.visit(TransformHierarchy.java:109) at com.google.cloud.dataflow.sdk.Pipeline.traverseTopologically(Pipeline.java:204) at com.google.cloud.dataflow.sdk.runners.DirectPipelineRunner$Evaluator.run(DirectPipelineRunner.java:584) at com.google.cloud.dataflow.sdk.runners.DirectPipelineRunner.run(DirectPipelineRunner.java:328) at com.google.cloud.dataflow.sdk.runners.DirectPipelineRunner.run(DirectPipelineRunner.java:70) at com.google.cloud.dataflow.sdk.Pipeline.run(Pipeline.java:145) at com.google.cloud.dataflow.examples.CalcMeanExample.main(CalcMeanExample.java:50) Caused by: java.io.NotSerializableException: org.apache.avro.io.DecoderFactory at java.io.ObjectOutputStream.writeObject0(ObjectOutputStream.java:1184) at java.io.ObjectOutputStream.defaultWriteFields(ObjectOutputStream.java:1548) at java.io.ObjectOutputStream.writeSerialData(ObjectOutputStream.java:1509) at java.io.ObjectOutputStream.writeOrdinaryObject(ObjectOutputStream.java:1432) at java.io.ObjectOutputStream.writeObject0(ObjectOutputStream.java:1178) at java.io.ObjectOutputStream.defaultWriteFields(ObjectOutputStream.java:1548) at java.io.ObjectOutputStream.writeSerialData(ObjectOutputStream.java:1509) at java.io.ObjectOutputStream.writeOrdinaryObject(ObjectOutputStream.java:1432) at java.io.ObjectOutputStream.writeObject0(ObjectOutputStream.java:1178) at java.io.ObjectOutputStream.writeObject(ObjectOutputStream.java:348) at com.google.cloud.dataflow.sdk.util.SerializableUtils.serializeToByteArray(SerializableUtils.java:47) ... 20 more
线程“main”中的异常java.lang.IllegalArgumentException:无法在com.google.cloud.dataflow.sdk.util.SerializableUtils.serializeToByteArray(SerializableUtils)中序列化com.google.cloud.dataflow.sdk.runners.DirectPipelineRunner$TestCombineDoFn@139982de .java:51)com.google.cloud.dataflow.sdk.util.SerializableUtils.ensureSerializable(SerializableUtils.java:81)com.google.cloud.dataflow.sdk.runners.DirectPipelineRunner $ Evaluator.ensureSerializable(DirectPipelineRunner.java) :784)在com.google.cloud.dataflow.sdk.transforms.ParDo.evaluateHelper(ParDo.java:1025)com.google.cloud.dataflow.sdk.transforms.ParDo.evaluateSingleHelper(ParDo.java:963)at at com.google.cloud.dataflow.sdk.transforms.ParDo.access $ 000(ParDo.java:441)com的com.google.cloud.dataflow.sdk.transforms.ParDo $ 1.evaluate(ParDo.java:951)。 go.com.cloud.dataflow.sdk.transforms.ParDo $ 1.evaluate(ParDo.java:946)com.google.cloud.dataflow.sdk.runners.DirectPipelineRunner $ Evaluator.visitTransform(DirectPipelineRunn) er.java:611)com.google.cloud.dataflow.sdk.runners.TransformTreeNode.visit(TransformTreeNode.java:200)com.google.cloud.dataflow.sdk.runners.TransformTreeNode.visit(TransformTreeNode.java: 196)com的com.google.cloud.dataflow.sdk.runners.TransformTreeNode.visit(TransformTreeNode.java:196)com的com.google.cloud.dataflow.sdk.runners.TransformTreeNode.visit(TransformTreeNode.java:196)位于com.google.cloud的com.google.cloud.dataflow.sdk.runners.TransformHierarchy.visit(TransformHierarchy.java:109)上的.google.cloud.dataflow.sdk.runners.TransformTreeNode.visit(TransformTreeNode.java:196) com.google.cloud.dataflow.sdk上的com.google.cloud.dataflow.sdk.runners.DirectPipelineRunner $ Evaluator.run(DirectPipelineRunner.java:584)上的.dataflow.sdk.Pipeline.traverseTopologically(Pipeline.java:204) .runners.DirectPipelineRunner.run(DirectPipelineRunner.java:328)com.google.cloud.dataflow.sdk.runners.DirectPipelineRunner.run(DirectPipelineRunner.java:70)at com.google.cloud.dataflow.sdk.Pipeline.ru n(Pipeline.java:145)位于com.google.cloud.dataflow.examples.CalcMeanExample.main(CalcMeanExample.java:50)引起:java.io.NotSerializableException:java的org.apache.avro.io.DecoderFactory。 io.ObjectOutputStream.writeObject0(ObjectOutputStream.java:1184)java.io.ObjectOutputStream.writeFields(ObjectOutputStream.java:1548),位于java.io.ObjectOutputStream.writeOrdinaryObject的java.io.ObjectOutputStream.writeSerialData(ObjectOutputStream.java:1509) (ObjectOutputStream.java:1432)java.io.ObjectOutputStream.writeObject0(ObjectOutputStream.java:1178)java.io.ObjectOutputStream.writeFields(ObjectOutputStream.java:1578)java.io.ObjectOutputStream.writeSerialData(ObjectOutputStream.java): 1509)at java.io.ObjectOutputStream.writeOrdinaryObject(ObjectOutputStream.java:1432)at java.io.ObjectOutputStream.writeObject0(ObjectOutputStream.java:1178)at java.io.ObjectOutputStream.writeObject(ObjectOutputStream.java:348)at com。 google.cloud.dataflow.sdk.util.SerializableUtils。 serializeToByteArray(SerializableUtils.java:47)......还有20多个
My code is as follows:
我的代码如下:
package com.google.cloud.dataflow.examples;
import java.io.Serializable;
import com.google.cloud.dataflow.sdk.Pipeline;
import com.google.cloud.dataflow.sdk.coders.AvroCoder;
import com.google.cloud.dataflow.sdk.coders.DefaultCoder;
import com.google.cloud.dataflow.sdk.coders.StringUtf8Coder;
import com.google.cloud.dataflow.sdk.io.TextIO;
import com.google.cloud.dataflow.sdk.options.DataflowPipelineOptions;
import com.google.cloud.dataflow.sdk.options.Default;
import com.google.cloud.dataflow.sdk.options.DefaultValueFactory;
import com.google.cloud.dataflow.sdk.options.Description;
import com.google.cloud.dataflow.sdk.options.PipelineOptions;
import com.google.cloud.dataflow.sdk.options.PipelineOptionsFactory;
import com.google.cloud.dataflow.sdk.transforms.Combine;
import com.google.cloud.dataflow.sdk.transforms.Combine.CombineFn;
import com.google.cloud.dataflow.sdk.transforms.DoFn;
import com.google.cloud.dataflow.sdk.transforms.ParDo;
import com.google.cloud.dataflow.sdk.util.gcsfs.GcsPath;
import com.google.cloud.dataflow.sdk.values.PCollection;
public class CalcMeanExample
{
{
public static void main(String[] args)
{
Options options = PipelineOptionsFactory.fromArgs(args).withValidation().as(Options.class);
Pipeline p = Pipeline.create(options);
PCollection<String> numbers = p.apply(TextIO.Read.named("ReadLines").withCoder(StringUtf8Coder.of()).from(options.getInput()));
numbers.apply( ParDo.of( new DoFn<String,String>(){
@Override
public void processElement(DoFn<String, String>.ProcessContext c) throws Exception {
System.out.println( c.element() );
}
}));
PCollection<String> average = numbers.apply( Combine.globally( new AverageFn()));
average.apply(TextIO.Write.named("WriteAverage")
.to(options.getOutput())
.withNumShards(options.getNumShards()));
p.run();
System.out.println( "done" );
}
public static class AverageFn extends CombineFn<String, AverageFn.Accum, String> {
@DefaultCoder(AvroCoder.class)
public static class Accum implements Serializable {
int sum = 0;
int count = 0;
}
public Accum createAccumulator() { return new Accum(); }
public void addInput(Accum accum, String input) {
accum.sum += Integer.parseInt(input );
accum.count++;
}
public Accum mergeAccumulators(Iterable<Accum> accums) {
Accum merged = createAccumulator();
for (Accum accum : accums) {
merged.sum += accum.sum;
merged.count += accum.count;
}
return merged;
}
public String extractOutput(Accum accum) {
return Double.toString( ((double) accum.sum) / accum.count );
}
}
/**
* Options supported by {@link WordCount}.
* <p>
* Inherits standard configuration options.
*/
public static interface Options extends PipelineOptions {
@Description("Path of the file to read from")
@Default.String("gs://dataflow-samples/shakespeare/kinglear.txt")
String getInput();
void setInput(String value);
@Description("Path of the file to write to")
@Default.InstanceFactory(OutputFactory.class)
String getOutput();
void setOutput(String value);
/**
* Returns gs://${STAGING_LOCATION}/"sorts.txt" as the default destination.
*/
public static class OutputFactory implements DefaultValueFactory<String> {
@Override
public String create(PipelineOptions options) {
DataflowPipelineOptions dataflowOptions = options.as(DataflowPipelineOptions.class);
if (dataflowOptions.getStagingLocation() != null) {
return GcsPath.fromUri(dataflowOptions.getStagingLocation())
.resolve("sorts.txt").toString();
} else {
throw new IllegalArgumentException("Must specify --output or --stagingLocation");
}
}
}
/**
* By default (numShards == 0), the system will choose the shard count.
* Most programs will not need this option.
*/
@Description("Number of output shards (0 if the system should choose automatically)")
@Default.Integer(1)
int getNumShards();
void setNumShards(int value);
}
}
}
Any thoughts on what would be causing this?
有什么想法导致这个?
1 个解决方案
#1
1
We're aware of this issue and are working on a fix which should be available soon.
我们已经意识到这个问题,正在努力解决这个问题。
For now, you should be able to use SerializableCoder rather than AvroCoder for the accumulator.
目前,您应该能够使用SerializableCoder而不是AvroCoder作为累加器。
#1
1
We're aware of this issue and are working on a fix which should be available soon.
我们已经意识到这个问题,正在努力解决这个问题。
For now, you should be able to use SerializableCoder rather than AvroCoder for the accumulator.
目前,您应该能够使用SerializableCoder而不是AvroCoder作为累加器。