推荐:https://www.zybuluo.com/samzhang/note/541890
扩展欧几里得,就是求出来ax+by=gcd(x,y)的x,y
为什么有解?
根据裴蜀定理,存在u,v使得au+bv=gcd(x,y)
证明:
这里面,c,e,就是所谓的u,v
对于ax+by=gcd(a,b)
因为gcd(a,b)=gcd(b,a%b)
ax+by=gcd(a,b)
bx1+(a%b)y1=gcd(b,a%b)
可以变成:ax+by=bx1+(a%b)y1
就是:ax+by=bx1+(a-[a/b]*b)y1
所以:ax+by=ay1+b(x1-[a/b]*y1)
所以,如果求出来y1,x1,就可以对应的求出来x,y
x=y1,y=(x1-[a/b]*y1)
不停地递归下去。
边界:
b==0 时,ax+by=gcd(a,b)
这时候,b是0,a就是gcd(a,b),所以x=1,y随便一个值,都是一个特解。
一般让y=0 (让|x|+|y|最小 -----------Monster_Yi)
(让|x+y|最小————SD_le)
(反正我也不知道是哪一个)
实测y等于几都可以,但是0小,一般不会爆int,爆掉的几率比较小。
递归返回去,上一步的x,y根据下一步的x,y赋值就好
代码:
void exgcd(int a,int b)
{
if(b==)
{
x=;
y=;
return;
}
exgcd(b,a%b);
k=x;
x=y;
y=k-a/b*y;
return;
}
这个没有传引用,直接交换的。x,y都是全局变量。便于理解。
但是代码太丑了。
传引用:
void exgcd(int a,int b,int &x,int &y){
if(b==){
x=,y=;return;
}
exgcd(b,a%b,y,x);
y-=(a/b)*x;
}
这里的代码是上一个版本的简略版,
传入下一步的时候,x,y传入的时候就交换了,相当于x=y1,y=x1
回溯之后的,y-=(a/b)*x, 因为这个时候的x就是 y1 , y已经赋值为x1,所以直接减就可以
当然,这里最后需要的x,y就直接传进去了。
应用:
1.求ax=1(mod b) b不一定是质数。也就是求一般情况下的a的逆元(noip2012 同余方程)
2.ax+by=gcd(a,b) 可以将gcd(a,b)除下去,变成:a0x+b0y=1 同上
3.ax+by=c无整数解情况:gcd(a,b)不能整除c(左边可以提出来gcd,右边不行)
4.对于ax+by=c 的一般方程,先判断有没有解,再求出ax+by=gcd(a,b) 最后 x,y 乘上 c/gcd(a,b)
5.ax-by=c ,算出来ax+by=c , y再取相反数即可。