lucene 3.0.2 基本操作入门

时间:2021-05-09 15:33:00
转自:Bannings
http://blog.csdn.net/zhangao0086/article/details/

我们为什么需要Lucene?

任何的的查询功能都类似,都是对文本内容的搜索,说白了,就是找出含有指定字符串的的资源,只是查找的范围不同而已.

目前的主流搜索都是全文搜索,即根据程序扫描文章中的每一个词,为每一个词建立相应的索引,并且指明该词在文章中出现的次数和位置.当用户查询时,根据建立的索引进行查找,类似于通过字典的检索方式来查字的过程.我们做搜索,要保证几点,第一点就是要快,如果百度、谷歌搜个东西要10几秒,恐怕都没人用了吧?第二点,光快有什么?搜出来的东西完全不是自己想要的,大家通过搜索引擎找东西的时候,肯定注意到了一点,就是大家很少在2页以后还点下一页,这搜索的结果是被处理过的,把最有可能是你需要的东西放在了前面,这就是准确性,而且搜索只针对文本,不管你的关键字的语义.所以,总结一下,就是:

  1. 只处理文本
  2. 不处理语义
  3. 英文不区分大小写
  4. 结果列表有相关度排序

和数据库的搜索语句有何不同?

我们为什么需要专门对全文搜索进行描述呢?因为它可以做到select语句做不到的事情.如果我们需要在数据库里面搜索一个关键字,比如ant,就会有类似的语句:

SELECT * FROM table_name WHERE content like '%ant%'

会把planting之类的单词也搜索出来,显然就是没有意义的,没有人会喜欢这样结果.

另外数据库的搜索也并不能为结果做相关度得分,也就做不了相关度排名.搜索结果也更多的是无意的,或者是无用的.

最后一点,也很致命,数据库中的like,找得非常慢,一条记录一条记录地找,有时候简直难以忍受,而用全文检索的方式则是先在目录里面查,找到记录所在的位置,再直接定位过去.

所以select语句的弱点就是Lucene的优点,它可以解决上述的问题.

在程序中需要引入哪些包?

需要如何准备开发环境呢,哪些包是必须要有的,心里要大致有个数才行:

参考以前的blog

Lucene的工作流程

我们每次使用搜索引擎的时候,右上角往往会显示用了多久,这个时间让人老是感觉不太准确,好像没那么快.这不是说搜索引擎的速度不够,有可能查询真的只用了那么点时间,但是返回的页面也是需要时间来生成的,还要在页面上加入广告之类的,这个时间可能就没有计算在内.总而言之,真正用来搜索的时间是非常短的,那么它为什么能够这么快呢?实际上,搜索的时候并不是在数据库里面进行搜索,而是在Lucene维护的索引库里面进行的,索引库包含两部分内容,一个称之为目录,这个目录里面就存有各种关键词对应数据的位置,搜索的时候上,Lucene就以某种指定的规则将你提供的关键字进行分词,然后在目录里面找,找得到的话,就返回一个编号,这个编号是唯一的,通过这个编号可以找到数据,但是数据也不是存在数据库中的.Lucene的索引库中更多的部分是用来存储数据的,这个数据是从互联网或者文件系统或者数据库中找到的,就像百度的快照一样,它只是一个缓存,给你看大致的内容,当你确定这就是你要找的内容,并且点进去的时候,才真正地去访问那个页面.搜索都是在索引库里面完成的.那么就出现了一个问题,有时候搜索到的东西,点进去发现不存在,或是已经删除了,或是已经更新了.那么就需要经常更新,或是时时更新.大致流程如下:

lucene 3.0.2 基本操作入门

爬虫用来不间断的获取数据,通常刚刚发布到互联网上的数据不能立即在搜索引擎中找到,就是因为这个原因.可以指定让爬虫爬哪些类型的页面,来做垂直搜索.

索引库的CURD

一切前提都是建立在有索引的基础上,所以要先创建索引.对索引进行写的对象是IndexWriter.需要指定索引的位置,可以在文件系统中,也可以在内存中,除非保证计算机的内存每时每刻都是存在的,否则将丢失:

/**
*FSDirectory:Directory是抽象类,FSDirectory是继承它的子类.FS前缀代表文件系统(File System),指定在当前路径下建立索引的文件夹名为indexDir. *Analyzer:分词器.以某种规则对关键字进行分词,分词的结果存进目录,用编号与数据对应,需要指定Lucene的版本号. *IndexWriter:能够建立索引库,要给定上面两个类.这里的第三个参数表示一个索引里面最多存多少个Field,超出部分将忽略. *MaxFieldLength.LIMITED:10000.
*/
Directory directory = FSDirectory.open(new File("./indexDir/"));
Analyzer analyzer = new StandardAnalyzer(Version.LUCENE_30);
IndexWriter indexWriter = new IndexWriter(directory,analyzer,MaxFieldLength.LIMITED);
           

这样就能创建索引库,但是不能把对象直接存进去,需要转成Lucene需求的对象:org.apache.lucene.document.Document,Document的每一个Field都代表对象需要存储在索引库中的属性,这样在搜索的时候,可以看到数据的摘要:

/**
*用Document的add()方法增加一个属性进索引库,接收一个Field对象. *Field对象的第一个参数:用指定的字符串创建一个Field对象. *Field对象的第二个参数:存储的值. *Field对象的第三个参数:是否在索引库的数据里面存储Field的值. *Field对象的第四个参数:以何种方式对第二个参数的值进行操作(分词、不分词、不建立索引).
*/
Document doc = new Document();
Article article = (Article) obj;
doc.add(new Field("id",article.getId().toString(),Store.YES,Index.ANALYZED));

把你的对象转为Document对象就可以被IndexWriter添加到索引库中了:

indexWriter.addDocument(Document);

这样,一个完整的创建索引就完成了.

添加索引的目的就是为了有效、快捷的查询,与IndexWriter对应,Lucene为查询提供了相应的API,org.apache.lucene.search.IndexSearcher,需要给它指定索引库的目录:

Directory directory = FSDirectory.open(new File("./indexDir/"));
IndexSearcher indexSearcher = new IndexSearcher(directory);

Lucene支持多种查询方式,最常用的就是Query对象了:

/**
*提供分词器
*QueryParser:用于解析查询字符串的处理器类 *第二个参数:在哪个Field里面查找 *Query.parse:需要解析的查询字符串
*/
Analyzer analyzer = new StandardAnalyzer(Version.LUCENE_30);
QueryParser queryParser = new QueryParser(Version.LUCENE_30,"title",analyzer);
Query query = queryParser.parse("panpan");

提供分词器一定要注意:创建索引库时的分词器要和解析时用的分词器一样.不然规则不一样,处理的关键词也不一样.很的可能找不到结果.得到Query对象之后,就可以进行查询了.要用到IndexSearcher的search()方法,这个方法需要两个参数,第一个参数就是Query对象,第二个参数是需要指定返回前多少条结果.然后返回一个TopDocs对象,返回一个对象而不是一个集合也是很好理解的,因为如果我们指定了返回前100条结果,如果结果总数大于100,我们就无法知道总共有多少条记录,也就无法完成分页.所以返回一个对象,这个对象封装了记录的总数和符合搜索条件的List集合:

/**
*得到TopDocs对象之后,可以获取它的成员变量totalHits和scoreDocs.这两个成员变量的访问权限是public的,所以可以直接访问
*/
TopDocs topDocs = indexSearcher.search(query, );
Integer count = topDocs.totalHits;
ScoreDoc[] scoreDocs = topDocs.scoreDocs;

然后通过循环的方式打印出来,以验证效果是否正确:

/**
*从ScoreDoc对象里面可以获取两个东西,同样是public的访问权限: *score:相关度得分,跟在内容中出现的次数有关 *doc:从上面那个流程图中可以得知,索引库从应用程序那里接收的是Document对象,所以返回的也是Document对象. *DocumentUtils.docConvert():自己写的工具方法,因为很多地方都要用到双边的转换
*/
List<Article> list = new ArrayList();
for(int i = ;i<scoreDocs.length;i++){
    ScoreDoc scoreDoc = scoreDocs[i];
    //浮点类型的得分
    float score = scoreDoc.score;
    int docID = scoreDoc.doc;
    Document document = indexSearcher.doc(docID);
    list.add(DocumentUtils.docConvert(document, Article.class));
}
System.out.println("总共获取了" + count + "条记录");
for(Article a: list){
    System.out.print(a.getId() + "      ");
    System.out.print(a.getContent() + "      ");
    System.out.println(a.getTitle());
}

把工具方法也放上来吧:

/**
*有些东西还是写死了,其实完全可以通过反射来完成,当时没有花太多时间的结果
*/
public static <M,T> T docConvert(M obj,Class<T> clazz){
    try {
        T t = clazz.newInstance();
        if(t instanceof Document){
            Document doc = (Document) t;
            Article article = (Article) obj;
            doc.add(new Field("id",article.getId().toString(),Store.YES,Index.ANALYZED));
            doc.add(new Field("title",article.getTitle(),Store.YES,Index.ANALYZED));
            doc.add(new Field("content",article.getContent(),Store.YES,Index.ANALYZED));
            return (T) doc;
        }else if(t instanceof Article){
            Article article = (Article) t;
            Document doc = (Document) obj;
            article.setId(Integer.parseInt(doc.get("id")));
            article.setContent(doc.get("content"));
            article.setTitle(doc.get("title"));
            return (T) article;
        }
        return null;
    } catch (Exception e) {
        throw new RuntimeException(e);
    }
}

基本的创建和查询就完成了.有几点需要注意:

  • IndexWriter和IndexSearcher使用完后,要记得调用它们的close()方法
  • 版本号一定要选择当前使用的版本
  • 如果在创建索引时选择Store.NO,将不会在索引库的数据中添加内容;选择Index.NO,将不会在索引库中增加目录
  • 目录和分词器都要匹配,不然找不到结果.更好的做好是在一个工具类中声明为static,初始化一次就行了

接下来考虑删除索引,为什么不是先更新呢?因为删除也是更新的一部分.还是需要用到IndexWriter类,有两种方式可以删除,第一种就是使用Term类,第二种就是将满足搜索条件的删除:

/** 
*Term类也是用来搜索的,构造函数的意思是:在哪个Field里面查哪个关键词
*然后调用IndexWriter的deleteDocument()方法删除包含指定Term的Document 
*/ 
IndexWriter indexWriter = null
Term term = new Term("title","panpan"); 
indexWriter = new IndexWriter(Configuration.directory,

Configuration.analyzer,MaxFieldLength.LIMITED);

indexWriter.deleteDocuments(term); 
 

再来就是更新,为什么把更新放在最后?因为更新操作需要较高的代价,因为文档修改后,即使是很小的修改,就可能会造成文档中的很多关键词的位置都发生变化,这就需要频繁的读取和修改记录,这种代价是相当高的.因此,一般不进行真正的更新操作,而是使用"先删除,再创建"的策略代替更新操作:

/**
*最后一句话,相当于: indexWriter.deleteDocuments(term); indexWriter.addDocument(doc);
先删除,再创建!
*/
IndexWriter indexWriter = null;
Article article = new Article();
article.setContent("This is the updated content!");
article.setId();
article.setTitle("panpan");
Term term = new Term("id",article.getId().toString());
indexWriter = new IndexWriter(Configuration.directory,

Configuration.analyzer,MaxFieldLength.LIMITED);

indexWriter.updateDocument(term, DocumentUtils.docConvert(article, Document.class));

-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

基本的CURD就到此结束了.但是有些问题没有解决,比如搜索时以上代码只能在一个Field里面进行搜索,如果我要在title和content里面同时进行搜索就不行,搜索两次?太无聊了.lucene当然有相应的解决办法,比如使用QueryParser的子类:MultiFieldQueryParser.从这个名字就猜到是专用来做多Field搜索的:

/**
*接收一个String数组也是可以理解的.
*/
String[] fields = {"title","content"};
MultiFieldQueryParser queryParser = new MultiFieldQueryParser(

Version.LUCENE_30,fields,Configuration.analyzer);

Query query = queryParser.parse("love");

如果稍微留心就可以注意到,索引库的文件不是一层不变的,cfs类型的文件在不停的有规律地增加,这个文件多了以后,会影响到搜索的效率,因为它要打开多个文件,所以我们又要想办法让它合并成一个文件:

indexWriter.addDocument(DocumentUtils.docConvert(article, Document.class)); 
indexWriter.optimize(); 
这是手动优化的方法,IndexWriter在关闭时候会自动调用commit()方法,这个方法会把索引真正的写到硬盘上去,也就是说每一次对索引库进行操作,都会生成一个索引文件.手动优化毕竟不太方便,那是否有自动优化的操作呢?答案是肯定的:
indexWriter.addDocument(DocumentUtils.docConvert(article, Document.class));
//手动优化 合并文件
//indexWriter.optimize();
//自动优化 合并文件
indexWriter.setMergeFactor();

设置合并因子即可,这里又有两点需要注意:

  1. 默认合并因子为10,也就是说cfs文件达到10个,Lucene就会自动合并
  2. 设置合并因子的代码一定要在操作IndexWriter的时候进行,并且是每一次操作的时候都要进行,它需要不停的判断
 

接着下一个问题,更新索引库实际上就是更新硬盘上的目录,每次更新或者创建新的索引都对硬盘进行操作,大家肯定都知道效率不高,但是索引库一定是要放在硬盘上的,不能随着程序的结束而结束,那么就要找个既能存储在硬盘上,又能保证效率的方法,比如程序启动的时候从硬盘加载索引库,而后一切操作都是针对内存中的索引库进行操作,在程序结束的时候把内存中的索引库存储在硬盘上去.这样就能解决这个不是问题的问题:

public void updateRAMIndex(){
    //RAMDirectory是Directory的子类,将在内存区保留一段缓存
    RAMDirectory ram = null;
    IndexWriter indexWriter = null;
    try {
        //将指定目录中的索引加载到内存中来
        ram = new RAMDirectory(Configuration.directory);
        //第一个参数决定了这是一个操作内存索引库的IndexWriter
        indexWriter = new IndexWriter(ram,

Configuration.analyzer,MaxFieldLength.LIMITED);

        //添加新的数据
        Article article = new Article(,"panpan","love you");
        indexWriter.addDocument(DocumentUtils.docConvert(article, Document.class));
        /**一个索引库只能有一个IndexWriter,一一对应.
         * 同时,同一时刻只能有一个IndexWriter,如果有两个,不能写同一个文件,不然就有问题 
         */
        indexWriter.close();
       
        /**这个IndexWriter是针对文件系统的
         * 第三个参数是指:   如果指定为true,表示重新创建索引库,如果已存在,就删除后再创建;
         *               指定为false,表示追加(默认值)
         *               如果不存在,就抛异常.
         */
        indexWriter = new IndexWriter(Configuration.directory,

Configuration.analyzer,true,MaxFieldLength.LIMITED);

        /**
         * 将指定目录添加到文件系统中,并且不优化
         * 如果传入一个IndexReader,可以进行优化:
           IndexReader indexReader = IndexReader.open(ram);
           indexWriter.addIndexes(indexReader);
         */
        indexWriter.addIndexesNoOptimize(ram);
    } catch (Exception e) {
        throw new RuntimeException(e);
    }finally{
        try {
            ram.close();
            indexWriter.close();
        } catch (Exception e) {
            throw new RuntimeException(e);
        }
    }
}