ACM数论-快速幂

时间:2022-11-04 15:30:48

ACM数论——快速幂


快速幂定义:

  顾名思义,快速幂就是快速算底数的n次幂。其时间复杂度为 O(log₂N), 与朴素的O(N)相比效率有了极大的提高。

原理:

  以下以求a的b次方来介绍:

    把b转换成二进制数。该二进制数第i位的权为   ACM数论-快速幂
    例如
        ACM数论-快速幂
    11的二进制是1011    
    11 = 2³×1 + 2²×0 + 2¹×1 + 2º×1
    因此,我们将a¹¹转化为算   ACM数论-快速幂

快速幂位运算:

 LL pow_mod(LL a, LL b, LL p){//a的b次方取余p
LL ret = ;
while(b){
if(b & ) ret = (ret * a) % p;
a = (a * a) % p;
b >>= ;
}
return ret;
}

快速乘:

  为了防止求ACM数论-快速幂的时候溢出,通常会使用一种叫做“快速乘”的算法。

LL mul(LL a, LL b, LL p){//快速乘,计算a*b%p
LL ret = ;
while(b){
if(b & ) ret = (ret + a) % p;
a = (a + a) % p;
b >>= ;
}
return ret;
}

  具体拿一个题目来示例,题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5187

  这个题先找规律,然后在求快速乘法和快速幂结合起来。题目推出来通式是:2n-2

#include<iostream>
#include <cstdio>
using namespace std;
typedef long long LL; LL fast_multi(LL m, LL n, LL mod)//快速乘法
{
LL ans = ;//注意初始化是0,不是1
while (n)
{
if (n & )
ans += m;
m = (m + m) % mod;//和快速幂一样,只不过这里是加
m %= mod;//取模,不要超出范围
ans %= mod;
n >>= ;
}
return ans;
}
LL fast_pow(LL a, LL n, LL mod)//快速幂
{
LL ans = ;
while (n)
{
if (n & )
ans = fast_multi(ans, a, mod);//不能直接乘
a = fast_multi(a, a, mod);
ans %= mod;
a %= mod;
n >>= ;
}
return ans;
} int main()
{
LL n, p;
while (~scanf("%I64d %I64d", &n, &p))
{
if (n == )//特判一下
{
printf("%I64d\n", % p);
continue;
}
printf("%I64d\n", (fast_pow(, n, p) - + p) % p);//这一步注意,不要为负数
}
return ;
}