题目:http://codeforces.com/contest/36/problem/E
给定一张无向图,要求输出两条欧拉路覆盖所有边;
分类讨论,首先判-1:有两个以上连通块 / 有四个以上奇度数点 / 只有一条边 / 有两个连通块而其中一个连通块里有四个奇度数点 (/ 有连通块里有奇数个奇度数点);
然后分两个连通块和一个连通块的情况进行 dfs 找欧拉路(模板 dfs );
注意可能没有奇度数的点,也就是有欧拉回路,所以不仅找奇度数点进行 dfs ,还要在那之后 dfs 仍然没有被走过的点;
明明是模仿题解写的竟然还调了两小时...码力++...
代码如下:
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
int const maxn=;
int n,m,d[maxn],ans[maxn],tot,fa[maxn],cnt,c[maxn],hd[maxn],ct=;
bool vis[maxn],used[maxn];
struct N{
int to,nxt;
N(int t=,int n=):to(t),nxt(n) {}
}ed[maxn<<];
void add(int x,int y){ed[++ct]=N(y,hd[x]); hd[x]=ct;}
int find(int x){return fa[x]==x?x:fa[x]=find(fa[x]);}
void dfs(int x)
{
vis[x]=;
for(int i=hd[x];i;i=hd[x])
{
hd[x]=ed[i].nxt;
if(used[i>>])continue;
used[i>>]=; dfs(ed[i].to); ans[++tot]=(i>>);
}
}
int main()
{
freopen("input.txt","r",stdin);
freopen("output.txt","w",stdout);
n=; scanf("%d",&m);//不能是 n=10005
for(int i=;i<=n;i++)fa[i]=i;//!!
for(int i=,x,y;i<=m;i++)
{
scanf("%d%d",&x,&y);
add(x,y); add(y,x); d[x]++; d[y]++;
if(find(x)!=find(y))fa[find(x)]=find(y);
}
for(int i=;i<=n;i++) if(d[i]&) c[find(i)]++;
for(int i=;i<=n;i++) if(c[i]&){printf("-1\n"); return ;}
for(int i=,sum=;i<=n;i++)
{
if(d[i])cnt+=(i==find(i));
if(c[i])sum+=c[i];
if(sum>){printf("-1\n"); return ;}
}
if(cnt>){printf("-1\n"); return ;}
if(cnt==)
{
for(int i=;i<=n;i++) if(c[i]==){printf("-1\n"); return ;}
for(int i=;i<=n;i++)
if(!vis[i]&&(d[i]&))
{
tot=; dfs(i); printf("%d\n",tot);
for(int j=tot;j;j--)printf("%d ",ans[j]); printf("\n");
}
for(int i=;i<=n;i++)//欧拉回路
if(!vis[i]&&d[i])
{
tot=; dfs(i); printf("%d\n",tot);
for(int j=tot;j;j--)printf("%d ",ans[j]); printf("\n");
}
}
else
{
bool fl=;
for(int i=;i<=n;i++) if(c[i]==)fl=;
if(fl)
{
for(int i=;i<=n;i++) if(d[i]&)
{
for(int j=i+;j<=n;j++)
if(d[j]&){d[i]++; d[j]++; add(i,j); add(j,i); break;}
break;
}
for(int i=;i<=n;i++)
if(!vis[i]&&(d[i]&)){tot=; dfs(i); break;}
for(int i=;i<=tot;i++) if(ans[i]==m+)
{
printf("%d\n",i-);
for(int j=;j<i;j++)printf("%d ",ans[j]); printf("\n");
printf("%d\n",tot-i);
for(int j=i+;j<=tot;j++)printf("%d ",ans[j]);
break;
}
}
else
{
for(int i=;i<=n;i++)
if(!vis[i]&&(d[i]&)){tot=; dfs(i);}
for(int i=;i<=n;i++)//欧拉回路
if(!vis[i]&&d[i]){tot=; dfs(i);}
if(tot<=){printf("-1\n"); return ;}//只有一条边
printf("1\n%d\n%d\n",ans[],tot-);
for(int i=;i<=tot;i++)printf("%d ",ans[i]);
}
}
return ;
}