I'm trying to use a custom Coder
so that I can do some transforms, but I'm having trouble getting the PCollection
to use my custom coder, and I suspect (???) it's because it's wrapped in a KV
. Specifically:
我正在尝试使用自定义编码器,以便我可以进行一些变换,但是我无法让PCollection使用我的自定义编码器,我怀疑(???)它是因为它包裹在一个KV中。特别:
Pipeline p = Pipeline.create ...
p.getCoderRegistry().registerCoder(MyClass.class, MyClassCoder.class);
...
PCollection<String> input = ...
PCollection<KV<String, MyClass>> t = input.apply(new ToKVTransform());
When I try to run something like this, I get a java.lang.ClassCastException and a stacktrace that includes a SerializableCoder
instead of MyClassCoder
like I would expect.
当我尝试运行这样的东西时,我得到一个java.lang.ClassCastException和一个包含SerializableCoder而不是MyClassCoder的堆栈跟踪,就像我期望的那样。
[error] at com.google.cloud.dataflow.sdk.coders.SerializableCoder.decode(SerializableCoder.java:133)
[error] at com.google.cloud.dataflow.sdk.coders.SerializableCoder.decode(SerializableCoder.java:50)
[error] at com.google.cloud.dataflow.sdk.coders.KvCoder.decode(KvCoder.java:95)
[error] at com.google.cloud.dataflow.sdk.coders.KvCoder.decode(KvCoder.java:42)
I see that the answer to another, somewhat related question (Using TextIO.Write with a complicated PCollection type in Google Cloud Dataflow) says to map everything to strings, and use that to pass stuff around PCollections. Is that really the recommended way??
我看到另一个有点相关的问题的答案(在Google Cloud Dataflow中使用带有复杂PCollection类型的TextIO.Write)说要将所有内容映射到字符串,并使用它来传递PCollections周围的东西。这真的是推荐的方式吗?
(Note: the actual code is in Scala, but I'm pretty sure it's not a Scala <=> Java issue so I've translated it into Java here.)
(注意:实际代码是在Scala中,但我很确定它不是Scala <=> Java问题所以我在这里将它翻译成Java。)
Update to include Scala code and more background:
更新以包含Scala代码和更多背景:
So this is the actual exception itself (should have included this at the beginning):
所以这是实际的异常本身(应该在开头包括这个):
java.lang.ClassCastException: cannot assign instance of scala.collection.immutable.HashMap$SerializationProxy to field com.example.schema.Schema.keyTypes of type scala.collection.immutable.Map in instance of com.example.schema.Schema
Where com.example.schema.Schema
is:
com.example.schema.Schema在哪里:
case class Schema(id: String, keyTypes: Map[String, Type])
And lastly, the SchemaCoder
is:
最后,SchemaCoder是:
class SchemaCoder extends com.google.cloud.dataflow.sdk.coders.CustomCoder[Schema] {
def decode(inputStream: InputStream, context: Context): Schema = {
val ois = new ObjectInputStream(inputStream)
val id: String = ois.readObject().asInstanceOf[String]
val javaMap: java.util.Map[String, Type] = ois.readObject().asInstanceOf[java.util.Map[String, Type]]
ois.close()
Schema(id, javaMap.asScala.toMap)
}
def encode(schema: Schema, outputStream: OutputStream, context: Context): Unit = {
val baos = new ByteArrayOutputStream()
val oos = new ObjectOutputStream(baos)
oos.writeObject(schema.id)
val javaMap: java.util.Map[String, Type] = schema.keyTypes.asJava
oos.writeObject(javaMap)
oos.close()
val encoded = new String(Base64.encodeBase64(baos.toByteArray()))
outputStream.write(encoded.getBytes())
}
}
====
====
Edit2: And here's what ToKVTransform
actually looks like:
Edit2:以下是ToKVTransform的实际情况:
class SchemaExtractorTransform extends PTransform[PCollection[String], PCollection[Schema]] {
class InferSchemaFromStringWithKeyFn extends DoFn[String, KV[String, Schema]] {
override def processElement(c: DoFn[String, KV[String, Schema]]#ProcessContext): Unit = {
val line = c.element()
inferSchemaFromString(line)
}
}
class GetFirstFn extends DoFn[KV[String, java.lang.Iterable[Schema]], Schema] {
override def processElement(c: DoFn[KV[String, java.lang.Iterable[Schema]], Schema]#ProcessContext): Unit = {
val idAndSchemas: KV[String, java.lang.Iterable[Schema]] = c.element()
val it: java.util.Iterator[Schema] = idAndSchemas.getValue().iterator()
c.output(it.next())
}
}
override def apply(inputLines: PCollection[String]): PCollection[Schema] = {
val schemasWithKey: PCollection[KV[String, Schema]] = inputLines.apply(
ParDo.named("InferSchemas").of(new InferSchemaFromStringWithKeyFn())
)
val keyed: PCollection[KV[String, java.lang.Iterable[Schema]]] = schemasWithKey.apply(
GroupByKey.create()
)
val schemasOnly: PCollection[Schema] = keyed.apply(
ParDo.named("GetFirst").of(new GetFirstFn())
)
schemasOnly
}
}
1 个解决方案
#1
2
This problem doesn't reproduce in Java; Scala is doing something differently with types that breaks Dataflow coder inference. To work around this, you can call setCoder on a PCollection to set its Coder explicitly, such as
这个问题不能在Java中重现; Scala对打破Dataflow编码器推断的类型做了不同的处理。要解决此问题,可以在PCollection上调用setCoder来显式设置其Coder,例如
schemasWithKey.setCoder(KvCoder.of(StringUtf8Coder.of(), SchemaCoder.of());
Here's the Java version of your code, just to make sure that it's doing approximately the same thing:
这是你的代码的Java版本,只是为了确保它做的大致相同:
public static class SchemaExtractorTransform
extends PTransform<PCollection<String>, PCollection<Schema>> {
class InferSchemaFromStringWithKeyFn extends DoFn<String, KV<String, Schema>> {
public void processElement(ProcessContext c) {
c.output(KV.of(c.element(), new Schema()));
}
}
class GetFirstFn extends DoFn<KV<String, java.lang.Iterable<Schema>>, Schema> {
private static final long serialVersionUID = 0;
public void processElement(ProcessContext c) {
c.output(c.element().getValue().iterator().next());
}
}
public PCollection<Schema> apply(PCollection<String> inputLines) {
PCollection<KV<String, Schema>> schemasWithKey = inputLines.apply(
ParDo.named("InferSchemas").of(new InferSchemaFromStringWithKeyFn()));
PCollection<KV<String, java.lang.Iterable<Schema>>> keyed =
schemasWithKey.apply(GroupByKey.<String, Schema>create());
PCollection<Schema> schemasOnly =
keyed.apply(ParDo.named("GetFirst").of(new GetFirstFn()));
return schemasOnly;
}
}
#1
2
This problem doesn't reproduce in Java; Scala is doing something differently with types that breaks Dataflow coder inference. To work around this, you can call setCoder on a PCollection to set its Coder explicitly, such as
这个问题不能在Java中重现; Scala对打破Dataflow编码器推断的类型做了不同的处理。要解决此问题,可以在PCollection上调用setCoder来显式设置其Coder,例如
schemasWithKey.setCoder(KvCoder.of(StringUtf8Coder.of(), SchemaCoder.of());
Here's the Java version of your code, just to make sure that it's doing approximately the same thing:
这是你的代码的Java版本,只是为了确保它做的大致相同:
public static class SchemaExtractorTransform
extends PTransform<PCollection<String>, PCollection<Schema>> {
class InferSchemaFromStringWithKeyFn extends DoFn<String, KV<String, Schema>> {
public void processElement(ProcessContext c) {
c.output(KV.of(c.element(), new Schema()));
}
}
class GetFirstFn extends DoFn<KV<String, java.lang.Iterable<Schema>>, Schema> {
private static final long serialVersionUID = 0;
public void processElement(ProcessContext c) {
c.output(c.element().getValue().iterator().next());
}
}
public PCollection<Schema> apply(PCollection<String> inputLines) {
PCollection<KV<String, Schema>> schemasWithKey = inputLines.apply(
ParDo.named("InferSchemas").of(new InferSchemaFromStringWithKeyFn()));
PCollection<KV<String, java.lang.Iterable<Schema>>> keyed =
schemasWithKey.apply(GroupByKey.<String, Schema>create());
PCollection<Schema> schemasOnly =
keyed.apply(ParDo.named("GetFirst").of(new GetFirstFn()));
return schemasOnly;
}
}