Given a sorted positive integer array nums and an integer n, add/patch elements to the array such that any number in range [1, n]
inclusive can be formed by the sum of some elements in the array. Return the minimum number of patches required.
Example 1:
nums = [1, 3]
, n = 6
Return 1
.
Combinations of nums are [1], [3], [1,3]
, which form possible sums of: 1,
.
3, 4
Now if we add/patch 2
to nums, the combinations are: [1], [2], [3], [1,3], [2,3], [1,2,3]
.
Possible sums are 1,
, which now covers the range
2, 3, 4, 5, 6[1, 6]
.
So we only need 1
patch.
Example 2:
nums = [1, 5, 10]
, n = 20
Return 2
.
The two patches can be [2,
.
4]
Example 3:
nums = [1, 2, 2]
, n = 5
Return 0
.
Credits:
Special thanks to @dietpepsi for adding this problem and creating
all test cases.
Subscribe to see which companies asked this
question
思路:我们依次将数组中缺少的数字加入数组nums.设置当前数字组合相加的范围是[1,total),total初始设置为1.当nums[i]存在且nums[i]<=total时,相加的范围可以拓展到[1,total+nums[i]).nums[i]最大可以等于total,否则我们利用贪心的策略,尽可能快地提高total的值,向数组nums中插入total。重复上述循环直至total>n.最终增加的数的个数就是数组nums大小的变化。
class Solution {
public:
int minPatches(vector<int>& nums, int n) {
int N =nums.size();
long total =;
int i=;
while(total<=n){
if(i<nums.size() &&nums[i]<=total){
total+=nums[i++];
}
else{
nums.insert(nums.begin()+i,total);
}
}
return nums.size()-N;
}
};