HDU 2157 How many ways??:矩阵快速幂【i到j共经过k个节点的方法数】

时间:2021-09-28 15:08:30

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2157

题解:

  给你一个有向图,n个节点m条边,问你从i到j共经过k个节点的方法数(不算i点)。

题解:

  先用邻接矩阵存图。

  假设k = 2,那么从i到j的方法数 = ∑ way[i][x] * way[x][j] (0<=x<n && x!=i && x!=j)

  诶?快看,那是矩阵乘法!

  

  设邻接矩阵为A,若i到j有边则val[i][j] = 1。

  k = 2时答案矩阵ans是A^2,答案就是ans.val[i][j]。

  那k任意时,答案矩阵就是A^k,答案为ans.val[i][j]。

AC Code:

 #include <iostream>
#include <stdio.h>
#include <string.h>
#define MAX_L 25
#define MOD 1000 using namespace std; struct Mat
{
int n;
int m;
int val[MAX_L][MAX_L];
Mat()
{
n=;
m=;
memset(val,,sizeof(val));
}
}; int n,m,t;
int a,b,k; Mat make_unit(int n)
{
Mat mat;
mat.n=n;
mat.m=n;
for(int i=;i<n;i++)
{
mat.val[i][i]=;
}
return mat;
} Mat mul_mat(const Mat &a,const Mat &b)
{
Mat c;
if(a.m!=b.n)
{
cout<<"Error: mul_mat"<<endl;
return c;
}
c.n=a.n;
c.m=b.m;
for(int i=;i<a.n;i++)
{
for(int j=;j<b.m;j++)
{
for(int k=;k<a.m;k++)
{
c.val[i][j]+=a.val[i][k]*b.val[k][j];
c.val[i][j]%=MOD;
}
}
}
return c;
} Mat quick_pow_mat(Mat mat,int k)
{
Mat ans;
if(mat.n!=mat.m)
{
cout<<"Error: quick_pow_mat"<<endl;
return ans;
}
ans=make_unit(mat.n);
while(k)
{
if(k&)
{
ans=mul_mat(ans,mat);
}
mat=mul_mat(mat,mat);
k>>=;
}
return ans;
} int main()
{
while(cin>>n>>m)
{
if(n== && m==) break;
Mat start;
start.n=n;
start.m=n;
for(int i=;i<m;i++)
{
cin>>a>>b;
start.val[a][b]=;
}
cin>>t;
for(int i=;i<t;i++)
{
cin>>a>>b>>k;
Mat ans=quick_pow_mat(start,k);
cout<<ans.val[a][b]<<endl;
}
}
}