Given n
nodes labeled from 0
to n - 1
and a list of undirected edges (each edge is a pair of nodes), write a function to find the number of connected components in an undirected graph.
Example 1:
Input:n = 5
andedges = [[0, 1], [1, 2], [3, 4]]
0 3
| |
1 --- 2 4 Output: 2
Example 2:
Input:n = 5
andedges = [[0, 1], [1, 2], [2, 3], [3, 4]]
0 4
| |
1 --- 2 --- 3 Output: 1
Note:
You can assume that no duplicate edges will appear in edges
. Since all edges are undirected, [0, 1]
is the same as [1, 0]
and thus will not appear together in edges
.
idea: //use union find and count
class Solution {
class UnionFind{
HashMap<Integer,Integer> map = new HashMap<>();
HashMap<Integer,Integer> sz = new HashMap<>();
int count;//num of component
UnionFind(int n){
count = n;//?
for(int i = 0; i<n; i++){
map.put(i, i);
sz.put(i, 1);
}
}
Integer root(int p){
if(!map.containsKey(p)) return null;
while(p != map.get(p)){
Integer temp = map.get(map.get((p)));
map.put(p, temp);
p = map.get(p);
}
return p;
}
void Union(int p, int q){
Integer pid = root(p);
Integer qid = root(q);
if(pid == null || qid == null) return;
if(pid.equals(qid) ) return; if(sz.get(pid) > sz.get(qid) ){
map.put(qid, pid);
sz.put(pid, sz.get(pid)+sz.get(qid));
}else {
map.put(pid, qid);
sz.put(qid, sz.get(pid)+sz.get(qid));
}
count--;
}
}
public int countComponents(int n, int[][] edges) {
UnionFind uf = new UnionFind(n);
for(int i = 0; i<edges.length; i++){
uf.Union(edges[i][0], edges[i][1]);
}
return uf.count;
}
}