An Observation
For medium-size matrices, the overheads on passing matrices from R to C++ are massively slower for arma::mat
types than for NumericMatrix
types. Like taking around 250x as long. Here's a minimal example
对于中等大小的矩阵,从R到C ++传递矩阵的开销对于arma :: mat类型比对NumericMatrix类型要慢得多。喜欢长约250倍。这是一个最小的例子
#include <RcppArmadillo.h>
// [[Rcpp::depends(RcppArmadillo)]]
using namespace Rcpp;
using namespace arma;
// [[Rcpp::export]]
double test_nm( NumericMatrix X ) {
return 0.0 ;
}
// [[Rcpp::export]]
double test_arma( mat X ) {
return 0.0 ;
}
// [[Rcpp::export]]
double test_nm_conv( NumericMatrix X ) {
mat X_arma = as<mat>( X ) ;
return 0.0 ;
}
Then, in R:
然后,在R:
XX <- matrix( runif( 10000 ), 2000, 50 )
microbenchmark( test_nm( XX ), test_arma( XX ), ( XX ) )
Unit: microseconds
expr min lq mean median uq max neval
test_nm(XX) 5.541 16.154 16.0781 17.577 18.876 48.024 100
test_arma(XX) 1280.946 1337.706 1404.0824 1361.237 1389.476 3385.868 100
test_nm_conv(XX) 1277.417 1338.835 1393.4888 1358.128 1386.101 4355.533 100
So just passing a matrix as an arma::mat
type is around 250x slower than NumericMatrix
. That's crazy! So...
因此,将矩阵作为arma :: mat类型传递的速度比NumericMatrix慢约250倍。太疯狂了!所以...
Questions arising
- What's going on? Why is
mat
so much slower thanNumericMatrix
? - Is there a good way to deal with this? I've got a problem where I need to use an
arma::mat
for some fairly simple matrix algebra in a function that gets called a lot of times. I'm currently usingarma
types throughout, and my code is much slower than I expected (that's how I ended up cooking up the dumb examples above). A speed penalty of 250x is such a big deal that I'm about to rewrite large sections of code to useNumericMatrix
types throughout. In fact, I might end up writing my own matrix multiplication function forNumericMatrix
and abandonarma
types altogether. But before I do, are there any better solutions?
这是怎么回事?为什么垫子比NumericMatrix慢得多?
有没有一个好方法来处理这个?我有一个问题,我需要在一个被调用很多次的函数中使用arma :: mat作为一些相当简单的矩阵代数。我目前正在使用arma类型,而且我的代码比我预期的要慢得多(这就是我最终编写上面的愚蠢示例)。 250x的速度惩罚是如此重要,我将重写大部分代码以使用NumericMatrix类型。事实上,我最终可能会为NumericMatrix编写自己的矩阵乘法函数,并完全抛弃arma类型。但在此之前,还有更好的解决方案吗?
(Although I guess another way to read this is not that arma::mat
is slow to convert from R types, but that the NumericMatrix
type is amazingly efficient!)
(虽然我想另一种方式来阅读这并不是说arma :: mat从R类型转换得很慢,但是NumericMatrix类型的效率非常高!)
1 个解决方案
#1
9
I believe this creates a new Armadillo matrix then copies the contents of your numeric matrix.
我相信这会创建一个新的Armadillo矩阵,然后复制数字矩阵的内容。
To cast the NumericMatrix to type arma::mat, you should use the following:
要将NumericMatrix转换为类型为arma :: mat,您应该使用以下内容:
// [[Rcpp::export]]
double test_const_arma( const mat& X ) {
return 0.0 ;
}
Speed comparison on my machine:
我的机器上的速度比较:
microbenchmark( test_const_arma( XX ), test_nm( XX ), test_arma( XX ), test_nm_conv( XX ))
## Unit: microseconds
## expr min lq mean median uq max neval
## test_const_arma(XX) 1.852 2.381 3.69014 2.7885 4.3490 11.994 100
## test_nm(XX) 1.925 2.455 3.47679 2.8535 3.5195 21.222 100
## test_arma(XX) 68.593 71.212 83.63055 73.4555 98.8070 278.981 100
## test_nm_conv(XX) 68.700 70.983 80.55983 73.1705 82.2665 183.484 100
#1
9
I believe this creates a new Armadillo matrix then copies the contents of your numeric matrix.
我相信这会创建一个新的Armadillo矩阵,然后复制数字矩阵的内容。
To cast the NumericMatrix to type arma::mat, you should use the following:
要将NumericMatrix转换为类型为arma :: mat,您应该使用以下内容:
// [[Rcpp::export]]
double test_const_arma( const mat& X ) {
return 0.0 ;
}
Speed comparison on my machine:
我的机器上的速度比较:
microbenchmark( test_const_arma( XX ), test_nm( XX ), test_arma( XX ), test_nm_conv( XX ))
## Unit: microseconds
## expr min lq mean median uq max neval
## test_const_arma(XX) 1.852 2.381 3.69014 2.7885 4.3490 11.994 100
## test_nm(XX) 1.925 2.455 3.47679 2.8535 3.5195 21.222 100
## test_arma(XX) 68.593 71.212 83.63055 73.4555 98.8070 278.981 100
## test_nm_conv(XX) 68.700 70.983 80.55983 73.1705 82.2665 183.484 100