I have the following histogram plot:
我有以下直方图:
Now, I'm sure many of you will point me in the direction of the matplotlib libraries, and other resources, but for some reason what I have in mind, and subsequently, read from various different sources doesn't quite work with my axes histogram. (Correct me if I am wrong!)
现在,我相信你们中的很多人会把我指向matplotlib库和其他资源的方向,但是出于某种原因,我想到了,后来,从各种不同的来源中读到的,并不是用我的坐标轴直方图来做的。(如果我错了请纠正!)
My question is this:
我的问题是:
How do I hatch fill the histogram from the position on the line splits overlaid on the histograms in the (2,2,1) and (2,2,4) diagrams.
如何从(2,2,1)和(2,2,2,4)图中重叠的直方图上的位置填充直方图?
The x histogram (position 2,2,1) has a vline
plotted at x = -0.222
, and the y histogram has a hline
plotted at y = 0.49
.
x直方图(位置2,2,1)在x = -0.222处有一个vline,而y直方图在y = 0.49处有一个hline。
An example working code, modified for just any array from the original, is as follows:
对原数组中的任意数组进行修改的示例工作代码如下:
import numpy as np
import scipy
import matplotlib as mpl
import matplotlib.pyplot as plt
import pylab
X = 0.32, 0.41, 0.45, 0.53, -0.23, 0.34, 0.35, 0.47, 0.48, 0.33, 0.49, -0.10, -0.23, 0.45, 0.19
Y = 0.56, 0.67, 0.49, 0.61, 0.00, -0.02, -0.12, 0.12, 0.23, 0.44, 0.56, 0.13, 0.56, 0.67, 0.28
binsize = 0.1
min_x_data, max_x_data = np.min(X), np.max(X)
num_x_bins = np.floor((max_x_data - min_x_data) / binsize)
min_y_data, max_y_data = np.min(Y), np.max(Y)
num_y_bins = np.floor((max_y_data - min_y_data) / bin size)
fig = plt.figure(221)
axScatter = fig.add_subplot(223)
axScatter.scatter(X, Y)
axScatter.set_xlim(-2.0, 1.5)
axScatter.set_ylim(-2.0, 2.5)
axHistX = fig.add_subplot(221)
axHistX.set_xlim(-2.0, 1.5)
axHistX.set_ylim(0, 10)
axHistY = fig.add_subplot(224)
axHistY.set_xlim(0, 10)
axHistY.set_ylim(-2.0, 2.5)
axHistX.hist(X, num_x_bins, ec='0.3', fc='none', histtype='step')
axHistY.hist(Y, num_y_bins, ec='0.3', fc='none', histtype='step', orientation='horizontal')
axScatter.axhline(y=0.49, xmin=0, xmax=1, linestyle='-.',c='k')
axScatter.axvline(x=-0.222, ymin=0, ymax=1, linestyle='-.',c='k')
axHistX.axvline(x=-0.222, ymin=0, ymax=1, linestyle='-.',c='k')
axHistY.axhline(y=0.49, xmin=0, xmax=1, linestyle='-.',c='k')
plt.show()
1 个解决方案
#1
5
So here my last try, but strongly suggest you to learn at the basics of python and matplotlib.
这里是我最后一次尝试,但强烈建议您学习python和matplotlib的基础知识。
def step_hist(ax, X, num_x_bins=10,
hatch_from= -2, hatch_till=0.5,
orientation='h'):
#make histogram by hand.
hist, edges = np.histogram(X, bins=num_x_bins)
#generate (x,y) points for a step-plot
edges = np.repeat(edges, 2)
hist = np.hstack((0, np.repeat(hist, 2), 0))
#plot step_hist
#indices where we want the plot hatached
fill_region =(hatch_from<edges)&(edges<hatch_till)
#apply hatching my using fill_between.
if orientation == 'h':
ax.fill_between(edges[fill_region],
hist[fill_region], 0,
color='none', edgecolor='k',
hatch='xxx')
ax.plot(edges, hist, 'k')
elif orientation == 'v':
ax.fill_betweenx(edges[fill_region],
hist[fill_region], 0,
color='none', edgecolor='k',
hatch='xxx')
ax.plot(hist, edges, 'k')
a, b = np.random.randn(500), np.random.randn(500)
ax_top = plt.subplot(221)
ax_right = plt.subplot(224)
ax_cent = plt.subplot(223)
ax_cent.scatter(a, b, c='k')
step_hist(ax_top, a)
step_hist(ax_right, a, orientation='v')
#1
5
So here my last try, but strongly suggest you to learn at the basics of python and matplotlib.
这里是我最后一次尝试,但强烈建议您学习python和matplotlib的基础知识。
def step_hist(ax, X, num_x_bins=10,
hatch_from= -2, hatch_till=0.5,
orientation='h'):
#make histogram by hand.
hist, edges = np.histogram(X, bins=num_x_bins)
#generate (x,y) points for a step-plot
edges = np.repeat(edges, 2)
hist = np.hstack((0, np.repeat(hist, 2), 0))
#plot step_hist
#indices where we want the plot hatached
fill_region =(hatch_from<edges)&(edges<hatch_till)
#apply hatching my using fill_between.
if orientation == 'h':
ax.fill_between(edges[fill_region],
hist[fill_region], 0,
color='none', edgecolor='k',
hatch='xxx')
ax.plot(edges, hist, 'k')
elif orientation == 'v':
ax.fill_betweenx(edges[fill_region],
hist[fill_region], 0,
color='none', edgecolor='k',
hatch='xxx')
ax.plot(hist, edges, 'k')
a, b = np.random.randn(500), np.random.randn(500)
ax_top = plt.subplot(221)
ax_right = plt.subplot(224)
ax_cent = plt.subplot(223)
ax_cent.scatter(a, b, c='k')
step_hist(ax_top, a)
step_hist(ax_right, a, orientation='v')