在R的直方图中准确的箱数

时间:2020-12-01 14:54:56

I'm having trouble making a histogram in R. The problem is that I tell it to make 5 bins but it makes 4 and I tell to make 5 and it makes 8 of them.

我在r中做直方图有困难,问题是我告诉它做5个箱子,但它做4个,我告诉它做5个,它做8个。

data <- c(5.28, 14.64, 37.25, 78.9, 44.92, 8.96, 19.22, 34.81, 33.89, 24.28, 6.5, 4.32, 2.77, 17.6, 33.26, 52.78, 5.98, 22.48, 20.11, 65.74, 35.73, 56.95, 30.61, 29.82);

hist(data, nclass = 5,freq=FALSE,col="orange",main="Histogram",xlab="x",ylab="f(x)",yaxs="i",xaxs="i")

Any ideas on how to fix it?

有什么办法解决吗?

5 个解决方案

#1


18  

Use the breaks argument:

用休息时间参数:

hist(data, breaks=seq(0,80,l=6),
       freq=FALSE,col="orange",main="Histogram",
       xlab="x",ylab="f(x)",yaxs="i",xaxs="i")

在R的直方图中准确的箱数

#2


10  

The integer specified as argument for nclass is used as a suggestion:

指定为nclass参数的整数作为建议:

the number is a suggestion only

这个数字只是一个建议。

An alternative solution is to cut your vector into a specified number of groups and plot the result:

另一种解决方案是将你的向量切成一定数量的组,并绘制结果:

plot(cut(data, breaks = 4))

在R的直方图中准确的箱数

#3


8  

Building on the answer from Rob Hyndman:

根据Rob Hyndman的回答:

Maybe a more generic solution would be to make the breaks considering the minimun and maximun values of the data, and the number of breaks = number_of_bins+1.

也许更通用的解决方案是考虑数据的最小值和最大值,以及断点的数量= number_of_bin +1。

hist(data,breaks=seq(min(data),max(data),l=number_of_bins+1), 
     freq=FALSE,col="orange",
     main="Histogram",xlab="x",ylab="f(x)",yaxs="i",xaxs="i")

#4


2  

I like to be quite accurate about my data points:

我喜欢对我的数据点非常准确:

hist(data,breaks = seq(min(data),max(data),by=((max(data) - min(data))/(length(data)-1))))

This should automate the process with little manual input.

这将使流程自动化,无需人工输入。

#5


1  

If you are not opposed to using something other than base graphics, there is always the ggplot2 way of doing things:

如果你不反对使用基础图形以外的东西,总有ggplot2做事方式:

library(ggplot2)

库(ggplot2)

data <- data.frame(x=data)

数据< - data.frame(x =数据)

    ggplot(data, aes(x=x))+
      geom_histogram(binwidth=18,color="black", fill="grey")+
      scale_x_continuous(breaks=c(0,20,40,60,80)

ggplot2 has great documentation at: docs.ggplot2.org/current/

ggplot2有很好的文档:docs.ggplot2.org/current/

For histogram specific examples: http://docs.ggplot2.org/current/geom_histogram.html

对于直方图的特定示例:http://docs.ggplot2.org/current/geom_histogram.html

#1


18  

Use the breaks argument:

用休息时间参数:

hist(data, breaks=seq(0,80,l=6),
       freq=FALSE,col="orange",main="Histogram",
       xlab="x",ylab="f(x)",yaxs="i",xaxs="i")

在R的直方图中准确的箱数

#2


10  

The integer specified as argument for nclass is used as a suggestion:

指定为nclass参数的整数作为建议:

the number is a suggestion only

这个数字只是一个建议。

An alternative solution is to cut your vector into a specified number of groups and plot the result:

另一种解决方案是将你的向量切成一定数量的组,并绘制结果:

plot(cut(data, breaks = 4))

在R的直方图中准确的箱数

#3


8  

Building on the answer from Rob Hyndman:

根据Rob Hyndman的回答:

Maybe a more generic solution would be to make the breaks considering the minimun and maximun values of the data, and the number of breaks = number_of_bins+1.

也许更通用的解决方案是考虑数据的最小值和最大值,以及断点的数量= number_of_bin +1。

hist(data,breaks=seq(min(data),max(data),l=number_of_bins+1), 
     freq=FALSE,col="orange",
     main="Histogram",xlab="x",ylab="f(x)",yaxs="i",xaxs="i")

#4


2  

I like to be quite accurate about my data points:

我喜欢对我的数据点非常准确:

hist(data,breaks = seq(min(data),max(data),by=((max(data) - min(data))/(length(data)-1))))

This should automate the process with little manual input.

这将使流程自动化,无需人工输入。

#5


1  

If you are not opposed to using something other than base graphics, there is always the ggplot2 way of doing things:

如果你不反对使用基础图形以外的东西,总有ggplot2做事方式:

library(ggplot2)

库(ggplot2)

data <- data.frame(x=data)

数据< - data.frame(x =数据)

    ggplot(data, aes(x=x))+
      geom_histogram(binwidth=18,color="black", fill="grey")+
      scale_x_continuous(breaks=c(0,20,40,60,80)

ggplot2 has great documentation at: docs.ggplot2.org/current/

ggplot2有很好的文档:docs.ggplot2.org/current/

For histogram specific examples: http://docs.ggplot2.org/current/geom_histogram.html

对于直方图的特定示例:http://docs.ggplot2.org/current/geom_histogram.html