I'm new with R. I need to generate a simple Frequency Table (as in books) with cumulative frequency and relative frequency.
我是r的新手,我需要生成一个简单的频率表(如书中所示),包含累积频率和相对频率。
So I want to generate from some simple data like
我想从一些简单的数据中生成
> x[1] 17 17 17 17 17 17 17 17 16 16 16 16 16 18 18 18 10 12 17 17 17 17 17 17 17 17 16 16 16 16 16 18 18 18 10[36] 12 15 19 20 22 20 19 19 19
a table like:
一个表:
frequency cumulative relative(9.99,11.7] 2 2 0.04545455(11.7,13.4] 2 4 0.04545455(13.4,15.1] 1 5 0.02272727(15.1,16.9] 10 15 0.22727273(16.9,18.6] 22 37 0.50000000(18.6,20.3] 6 43 0.13636364(20.3,22] 1 44 0.02272727
I know it should be simple, but I don't know how.
我知道这应该很简单,但我不知道怎么做。
I got some results using this code:
我用这个代码得到了一些结果:
factorx <- factor(cut(x, breaks=nclass.Sturges(x)))as.matrix(table(factorx))
5 个解决方案
#1
24
You're close! There are a few functions that will make this easy for you, namely cumsum()
and prop.table()
. Here's how I'd probably put this together. I make some random data, but the point is the same:
你关闭!有一些函数可以让您轻松地完成这项工作,即cumsum()和prop.table()。这就是我怎么把它们放在一起的。我做了一些随机的数据,但重点是一样的:
#Fake datax <- sample(10:20, 44, TRUE)#Your codefactorx <- factor(cut(x, breaks=nclass.Sturges(x)))#Tabulate and turn into data.framexout <- as.data.frame(table(factorx))#Add cumFreq and proportionsxout <- transform(xout, cumFreq = cumsum(Freq), relative = prop.table(Freq))#----- factorx Freq cumFreq relative1 (9.99,11.4] 11 11 0.250000002 (11.4,12.9] 3 14 0.068181823 (12.9,14.3] 11 25 0.250000004 (14.3,15.7] 2 27 0.045454555 (15.7,17.1] 6 33 0.136363646 (17.1,18.6] 3 36 0.068181827 (18.6,20] 8 44 0.18181818
#2
20
The base functions table
, cumsum
and prop.table
should get you there:
基本功能表,累加和支柱。桌子应该能让你到达那里:
cbind( Freq=table(x), Cumul=cumsum(table(x)), relative=prop.table(table(x))) Freq Cumul relative10 2 2 0.0454545512 2 4 0.0454545515 1 5 0.0227272716 10 15 0.2272727317 16 31 0.3636363618 6 37 0.1363636419 4 41 0.0909090920 2 43 0.0454545522 1 44 0.02272727
With cbind and naming of the columns to your liking this should be pretty easy for you in the future. The output from the table function is a matrix, so this result is also a matrix. If this were being done on something big it would be more efficient todo this:
有了cbind和列的命名,以后对您来说应该很容易。表函数的输出是一个矩阵,所以这个结果也是一个矩阵。如果这是在大事件上进行的,那么这样做会更有效:
tbl <- table(x)cbind( Freq=tbl, Cumul=cumsum(tbl), relative=prop.table(tbl))
#3
12
If you are looking for something pre-packaged, consider the freq()
function from the descr
package.
如果您正在寻找预先打包的东西,请考虑来自descr包的freq()函数。
library(descr)x = c(sample(10:20, 44, TRUE))freq(x, plot = FALSE)
Or to get cumulative percents, use the ordered()
function
或者使用有序()函数来获取累积百分比
freq(ordered(x), plot = FALSE)
To add a "cumulative frequencies" column:
增加“累积频率”栏:
tab = as.data.frame(freq(ordered(x), plot = FALSE))CumFreq = cumsum(tab[-dim(tab)[1],]$Frequency)tab$CumFreq = c(CumFreq, NA)tab
If your data has missing values, a valid percent column is added to the table.
如果您的数据丢失了值,则将一个有效的百分比列添加到表中。
x = c(sample(10:20, 44, TRUE), NA, NA)freq(ordered(x), plot = FALSE)
#4
1
Yet another possibility:
另一个可能性:
library(SciencesPo) x = c(sample(10:20, 50, TRUE)) freq(x)
#5
-1
My suggestion is to check the agricolae package... check it out:
我的建议是检查一下农产品包装。检查一下:
library(agricolae)weight<-c( 68, 53, 69.5, 55, 71, 63, 76.5, 65.5, 69, 75, 76, 57, 70.5,+ 71.5, 56, 81.5, 69, 59, 67.5, 61, 68, 59.5, 56.5, 73,+ 61, 72.5, 71.5, 59.5, 74.5, 63)h1<- graph.freq(weight,col="yellow",frequency=1,las=2,xlab="h1")print(summary(h1),row.names=FALSE)
#1
24
You're close! There are a few functions that will make this easy for you, namely cumsum()
and prop.table()
. Here's how I'd probably put this together. I make some random data, but the point is the same:
你关闭!有一些函数可以让您轻松地完成这项工作,即cumsum()和prop.table()。这就是我怎么把它们放在一起的。我做了一些随机的数据,但重点是一样的:
#Fake datax <- sample(10:20, 44, TRUE)#Your codefactorx <- factor(cut(x, breaks=nclass.Sturges(x)))#Tabulate and turn into data.framexout <- as.data.frame(table(factorx))#Add cumFreq and proportionsxout <- transform(xout, cumFreq = cumsum(Freq), relative = prop.table(Freq))#----- factorx Freq cumFreq relative1 (9.99,11.4] 11 11 0.250000002 (11.4,12.9] 3 14 0.068181823 (12.9,14.3] 11 25 0.250000004 (14.3,15.7] 2 27 0.045454555 (15.7,17.1] 6 33 0.136363646 (17.1,18.6] 3 36 0.068181827 (18.6,20] 8 44 0.18181818
#2
20
The base functions table
, cumsum
and prop.table
should get you there:
基本功能表,累加和支柱。桌子应该能让你到达那里:
cbind( Freq=table(x), Cumul=cumsum(table(x)), relative=prop.table(table(x))) Freq Cumul relative10 2 2 0.0454545512 2 4 0.0454545515 1 5 0.0227272716 10 15 0.2272727317 16 31 0.3636363618 6 37 0.1363636419 4 41 0.0909090920 2 43 0.0454545522 1 44 0.02272727
With cbind and naming of the columns to your liking this should be pretty easy for you in the future. The output from the table function is a matrix, so this result is also a matrix. If this were being done on something big it would be more efficient todo this:
有了cbind和列的命名,以后对您来说应该很容易。表函数的输出是一个矩阵,所以这个结果也是一个矩阵。如果这是在大事件上进行的,那么这样做会更有效:
tbl <- table(x)cbind( Freq=tbl, Cumul=cumsum(tbl), relative=prop.table(tbl))
#3
12
If you are looking for something pre-packaged, consider the freq()
function from the descr
package.
如果您正在寻找预先打包的东西,请考虑来自descr包的freq()函数。
library(descr)x = c(sample(10:20, 44, TRUE))freq(x, plot = FALSE)
Or to get cumulative percents, use the ordered()
function
或者使用有序()函数来获取累积百分比
freq(ordered(x), plot = FALSE)
To add a "cumulative frequencies" column:
增加“累积频率”栏:
tab = as.data.frame(freq(ordered(x), plot = FALSE))CumFreq = cumsum(tab[-dim(tab)[1],]$Frequency)tab$CumFreq = c(CumFreq, NA)tab
If your data has missing values, a valid percent column is added to the table.
如果您的数据丢失了值,则将一个有效的百分比列添加到表中。
x = c(sample(10:20, 44, TRUE), NA, NA)freq(ordered(x), plot = FALSE)
#4
1
Yet another possibility:
另一个可能性:
library(SciencesPo) x = c(sample(10:20, 50, TRUE)) freq(x)
#5
-1
My suggestion is to check the agricolae package... check it out:
我的建议是检查一下农产品包装。检查一下:
library(agricolae)weight<-c( 68, 53, 69.5, 55, 71, 63, 76.5, 65.5, 69, 75, 76, 57, 70.5,+ 71.5, 56, 81.5, 69, 59, 67.5, 61, 68, 59.5, 56.5, 73,+ 61, 72.5, 71.5, 59.5, 74.5, 63)h1<- graph.freq(weight,col="yellow",frequency=1,las=2,xlab="h1")print(summary(h1),row.names=FALSE)