实现mapreduce多文件自定义输出

时间:2022-06-29 10:58:11

 普通maprduce中通常是有map和reduce两个阶段,在不做设置的情况下,计算结果会以part-000*输出成多个文件,并且输出的文件数量和reduce数量一样,文件内容格式也不能随心所欲。这样不利于后续结果处理。

       在hadoop中,reduce支持多个输出,输出的文件名也是可控的,就是继承MultipleTextOutputFormat类,重写generateFileNameForKey方法。如果只是想做到输出结果的文件名可控,实现自己的LogNameMultipleTextOutputFormat类,设置jobconf.setOutputFormat(LogNameMultipleTextOutputFormat.class);就可以了,但是这种方式只限于使用旧版本的hadoop api.如果想采用新版本的api接口或者自定义输出内容的格式等等更多的需求,那么就要自己动手重写一些hadoop api了。

    首先需要构造一个自己的MultipleOutputFormat类实现FileOutputFormat类(注意是org.apache.hadoop.mapreduce.lib.output包的FileOutputFormat

  

import java.io.DataOutputStream;
import java.io.IOException;
import java.util.HashMap;
import java.util.Iterator;


import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FSDataOutputStream;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Writable;
import org.apache.hadoop.io.WritableComparable;
import org.apache.hadoop.io.compress.CompressionCodec;
import org.apache.hadoop.io.compress.GzipCodec;
import org.apache.hadoop.mapreduce.OutputCommitter;
import org.apache.hadoop.mapreduce.RecordWriter;
import org.apache.hadoop.mapreduce.TaskAttemptContext;
import org.apache.hadoop.mapreduce.lib.output.FileOutputCommitter;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.ReflectionUtils;


/**
* This abstract class extends the FileOutputFormat, allowing to write the
* output data to different output files. There are three basic use cases for
* this class.
* Created on 2012-07-08
* @author zhoulongliu
* @param <K>
* @param <V>
*/
public abstract class MultipleOutputFormat<K extends WritableComparable<?>, V extends Writable> extends
FileOutputFormat<K, V> {


//接口类,需要在调用程序中实现generateFileNameForKeyValue来获取文件名
private MultiRecordWriter writer = null;


public RecordWriter<K, V> getRecordWriter(TaskAttemptContext job) throws IOException, InterruptedException {
if (writer == null) {
writer = new MultiRecordWriter(job, getTaskOutputPath(job));
}
return writer;
}


/**
* get task output path
* @param conf
* @return
* @throws IOException
*/
private Path getTaskOutputPath(TaskAttemptContext conf) throws IOException {
Path workPath = null;
OutputCommitter committer = super.getOutputCommitter(conf);
if (committer instanceof FileOutputCommitter) {
workPath = ((FileOutputCommitter) committer).getWorkPath();
} else {
Path outputPath = super.getOutputPath(conf);
if (outputPath == null) {
throw new IOException("Undefined job output-path");
}
workPath = outputPath;
}
return workPath;
}


/**
* 通过key, value, conf来确定输出文件名(含扩展名) Generate the file output file name based
* on the given key and the leaf file name. The default behavior is that the
* file name does not depend on the key.
*
* @param key the key of the output data
* @param name the leaf file name
* @param conf the configure object
* @return generated file name
*/
protected abstract String generateFileNameForKeyValue(K key, V value, Configuration conf);


/**
* 实现记录写入器RecordWriter类
* (内部类)
* @author zhoulongliu
*
*/
public class MultiRecordWriter extends RecordWriter<K, V> {
/** RecordWriter的缓存 */
private HashMap<String, RecordWriter<K, V>> recordWriters = null;
private TaskAttemptContext job = null;
/** 输出目录 */
private Path workPath = null;


public MultiRecordWriter(TaskAttemptContext job, Path workPath) {
super();
this.job = job;
this.workPath = workPath;
recordWriters = new HashMap<String, RecordWriter<K, V>>();
}


@Override
public void close(TaskAttemptContext context) throws IOException, InterruptedException {
Iterator<RecordWriter<K, V>> values = this.recordWriters.values().iterator();
while (values.hasNext()) {
values.next().close(context);
}
this.recordWriters.clear();
}


@Override
public void write(K key, V value) throws IOException, InterruptedException {
// 得到输出文件名
String baseName = generateFileNameForKeyValue(key, value, job.getConfiguration());
//如果recordWriters里没有文件名,那么就建立。否则就直接写值。
RecordWriter<K, V> rw = this.recordWriters.get(baseName);
if (rw == null) {
rw = getBaseRecordWriter(job, baseName);
this.recordWriters.put(baseName, rw);
}
rw.write(key, value);
}


// ${mapred.out.dir}/_temporary/_${taskid}/${nameWithExtension}
private RecordWriter<K, V> getBaseRecordWriter(TaskAttemptContext job, String baseName) throws IOException,
InterruptedException {
Configuration conf = job.getConfiguration();
//查看是否使用解码器
boolean isCompressed = getCompressOutput(job);
String keyValueSeparator = ",";
RecordWriter<K, V> recordWriter = null;
if (isCompressed) {
Class<? extends CompressionCodec> codecClass = getOutputCompressorClass(job, GzipCodec.class);
CompressionCodec codec = ReflectionUtils.newInstance(codecClass, conf);
Path file = new Path(workPath, baseName + codec.getDefaultExtension());
FSDataOutputStream fileOut = file.getFileSystem(conf).create(file, false);
//这里我使用的自定义的OutputFormat
recordWriter = new LineRecordWriter<K, V>(new DataOutputStream(codec.createOutputStream(fileOut)),
keyValueSeparator);
} else {
Path file = new Path(workPath, baseName);
FSDataOutputStream fileOut = file.getFileSystem(conf).create(file, false);
//这里我使用的自定义的OutputFormat
recordWriter = new LineRecordWriter<K, V>(fileOut, keyValueSeparator);
}
return recordWriter;
}
}


}
    接着你还需要自定义一个LineRecordWriter实现记录写入器RecordWriter类,自定义输出格式。

import java.io.DataOutputStream;
import java.io.IOException;
import java.io.UnsupportedEncodingException;

import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.RecordWriter;
import org.apache.hadoop.mapreduce.TaskAttemptContext;

/**
*
* 重新构造实现记录写入器RecordWriter类
* Created on 2012-07-08
* @author zhoulongliu
* @param <K>
* @param <V>
*/
public class LineRecordWriter<K, V> extends RecordWriter<K, V> {

private static final String utf8 = "UTF-8";//定义字符编码格式
private static final byte[] newline;
static {
try {
newline = "\n".getBytes(utf8);//定义换行符
} catch (UnsupportedEncodingException uee) {
throw new IllegalArgumentException("can't find " + utf8 + " encoding");
}
}
protected DataOutputStream out;
private final byte[] keyValueSeparator;

//实现构造方法,出入输出流对象和分隔符
public LineRecordWriter(DataOutputStream out, String keyValueSeparator) {
this.out = out;
try {
this.keyValueSeparator = keyValueSeparator.getBytes(utf8);
} catch (UnsupportedEncodingException uee) {
throw new IllegalArgumentException("can't find " + utf8 + " encoding");
}
}

public LineRecordWriter(DataOutputStream out) {
this(out, "\t");
}

private void writeObject(Object o) throws IOException {
if (o instanceof Text) {
Text to = (Text) o;
out.write(to.getBytes(), 0, to.getLength());
} else {
out.write(o.toString().getBytes(utf8));
}
}

/**
* 将mapreduce的key,value以自定义格式写入到输出流中
*/
public synchronized void write(K key, V value) throws IOException {
boolean nullKey = key == null || key instanceof NullWritable;
boolean nullValue = value == null || value instanceof NullWritable;
if (nullKey && nullValue) {
return;
}
if (!nullKey) {
writeObject(key);
}
if (!(nullKey || nullValue)) {
out.write(keyValueSeparator);
}
if (!nullValue) {
writeObject(value);
}
out.write(newline);
}

public synchronized void close(TaskAttemptContext context) throws IOException {
out.close();
}

}

     接着,你实现刚刚重写MultipleOutputFormat类中的generateFileNameForKeyValue方法自定义返回需要输出文件的名称,我这里是以key值中以逗号分割取第一个字段的值作为输出文件名,这样第一个字段值相同的会输出到一个文件中并以其值作为文件名。

 public static class VVLogNameMultipleTextOutputFormat extends MultipleOutputFormat<Text, NullWritable> {

@Override
protected String generateFileNameForKeyValue(Text key, NullWritable value, Configuration conf) {
String sp[] = key.toString().split(",");
String filename = sp[1];
try {
Long.parseLong(sp[1]);
} catch (NumberFormatException e) {
filename = "000000000000";
}
return filename;
}


}



     最后就是在job调用时设置了

        Configuration conf = getConf();
        Job job = new Job(conf);
        job.setNumReduceTasks(12);
        ......
        job.setMapperClass(VVEtlMapper.class); 
        job.setReducerClass(EtlReducer.class);
        job.setOutputFormatClass(VVLogNameMultipleTextOutputFormat.class);//设置自定义的多文件输出类
       FileInputFormat.setInputPaths(job,new Path(args[0]));
       FileOutputFormat.setOutputPath(job,new Path(args[1]));
       FileOutputFormat.setCompressOutput(job, true);//设置输出结果采用压缩 
       FileOutputFormat.setOutputCompressorClass(job, LzopCodec.class); //设置输出结果采用lzo压缩

   ok,这样你就完成了支持新的hadoop api自定义的多文件输出mapreduce编写。