The Fibonacci numbers, commonly denoted F(n)
form a sequence, called the Fibonacci sequence, such that each number is the sum of the two preceding ones, starting from 0
and 1
. That is,
F(0) = 0, F(1) = 1
F(N) = F(N - 1) + F(N - 2), for N > 1.
Given N
, calculate F(N)
.
Example 1:
Input: 2
Output: 1
Explanation: F(2) = F(1) + F(0) = 1 + 0 = 1.
Example 2:
Input: 3
Output: 2
Explanation: F(3) = F(2) + F(1) = 1 + 1 = 2.
Example 3:
Input: 4
Output: 3
Explanation: F(4) = F(3) + F(2) = 2 + 1 = 3.
Note:
0 ≤ N
≤ 30.
Idea 1. dynamic programming, 经典的入门dp,
dp[i] = dp[i-2] + dp[i-1] (i >= 2)
Time complexity: O(n)
Space complexity: O(n)
class Solution {
public int fib(int N) {
if(N <= 1) {
return N;
} int[] dp = new int[N+1];
dp[0] = 0;
dp[1] = 1; for(int i = 2; i <= N; ++i) {
dp[i] = dp[i-1] + dp[i-2];
} return dp[N];
}
}
Idea 1.b, 从上面的公式可以看出只需要前2位dp[i-2] and dp[i-1], 可以不用array dp[].
Time complxity: O(n)
Space complexity: O(1)
class Solution {
public int fib(int N) {
int first = 0;
int second = 1;
int result = N; for(int i = 2; i <= N; ++i) {
result = first + second;
first = second;
second = result;
} return result;
}
}