原文地址:https://blog.csdn.net/u011596455/article/details/78650458
转载请注明出处。
什么是时间序列
时间序列简单的说就是各时间点上形成的数值序列,时间序列分析就是通过观察历史数据预测未来的值。在这里需要强调一点的是,时间序列分析并不是关于时间的回归,它主要是研究自身的变化规律的(这里不考虑含外生变量的时间序列)。
为什么用python
用两个字总结“情怀”,爱屋及乌,个人比较喜欢python,就用python撸了。能做时间序列的软件很多,SAS、R、SPSS、Eviews甚至matlab等等,实际工作中应用得比较多的应该还是SAS和R,前者推荐王燕写的《应用时间序列分析》,后者推荐“基于R语言的时间序列建模完整教程”这篇博文(翻译版)。python作为科学计算的利器,当然也有相关分析的包:statsmodels中tsa模块,当然这个包和SAS、R是比不了,但是python有另一个神器:pandas!pandas在时间序列上的应用,能简化我们很多的工作。
环境配置
python推荐直接装Anaconda,它集成了许多科学计算包,有一些包自己手动去装还是挺费劲的。statsmodels需要自己去安装,这里我推荐使用0.6的稳定版,0.7及其以上的版本能在github上找到,该版本在安装时会用C编译好,所以修改底层的一些代码将不会起作用。
时间序列分析
1.基本模型
自回归移动平均模型(ARMA(p,q))是时间序列中最为重要的模型之一,它主要由两部分组成: AR代表p阶自回归过程,MA代表q阶移动平均过程,其公式如下:
依据模型的形式、特性及自相关和偏自相关函数的特征,总结如下:
在时间序列中,ARIMA模型是在ARMA模型的基础上多了差分的操作。
2.pandas时间序列操作
大熊猫真的很可爱,这里简单介绍一下它在时间序列上的可爱之处。和许多时间序列分析一样,本文同样使用航空乘客数据(AirPassengers.csv)作为样例。
数据读取:
# -*- coding:utf-8 -*- import numpy as np import pandas as pd from datetime import datetime import matplotlib.pylab as plt
# 读取数据,pd.read_csv默认生成DataFrame对象,需将其转换成Series对象 df = pd.read_csv('AirPassengers.csv', encoding='utf-8', index_col='date') df.index = pd.to_datetime(df.index) # 将字符串索引转换成时间索引 ts = df['x'] # 生成pd.Series对象 # 查看数据格式 ts.head() ts.head().index
查看某日的值既可以使用字符串作为索引,又可以直接使用时间对象作为索引
ts['1949-01-01'] ts[datetime(1949,1,1)]
两者的返回值都是第一个序列值:112
如果要查看某一年的数据,pandas也能非常方便的实现
ts['1949']
切片操作:
ts['1949-1' : '1949-6']
注意时间索引的切片操作起点和尾部都是包含的,这点与数值索引有所不同
pandas还有很多方便的时间序列函数,在后面的实际应用中在进行说明。
3. 平稳性检验
我们知道序列平稳性是进行时间序列分析的前提条件,很多人都会有疑问,为什么要满足平稳性的要求呢?在大数定理和中心定理中要求样本同分布(这里同分布等价于时间序列中的平稳性),而我们的建模过程中有很多都是建立在大数定理和中心极限定理的前提条件下的,如果它不满足,得到的许多结论都是不可靠的。以虚假回归为例,当响应变量和输入变量都平稳时,我们用t统计量检验标准化系数的显著性。而当响应变量和输入变量不平稳时,其标准化系数不在满足t分布,这时再用t检验来进行显著性分析,导致拒绝原假设的概率增加,即容易犯第一类错误,从而得出错误的结论。
平稳时间序列有两种定义:严平稳和宽平稳
严平稳顾名思义,是一种条件非常苛刻的平稳性,它要求序列随着时间的推移,其统计性质保持不变。对于任意的τ,其联合概率密度函数满足:
严平稳的条件只是理论上的存在,现实中用得比较多的是宽平稳的条件。
宽平稳也叫弱平稳或者二阶平稳(均值和方差平稳),它应满足:
- 常数均值
- 常数方差
- 常数自协方差
平稳性检验:观察法和单位根检验法
基于此,我写了一个名为test_stationarity的统计性检验模块,以便将某些统计检验结果更加直观的展现出来。
# -*- coding:utf-8 -*- from statsmodels.tsa.stattools import adfuller import pandas as pd import matplotlib.pyplot as plt import numpy as np from statsmodels.graphics.tsaplots import plot_acf, plot_pacf # 移动平均图 def draw_trend(timeSeries, size): f = plt.figure(facecolor='white') # 对size个数据进行移动平均 rol_mean = timeSeries.rolling(window=size).mean() # 对size个数据进行加权移动平均 rol_weighted_mean = pd.ewma(timeSeries, span=size) timeSeries.plot(color='blue', label='Original') rolmean.plot(color='red', label='Rolling Mean') rol_weighted_mean.plot(color='black', label='Weighted Rolling Mean') plt.legend(loc='best') plt.title('Rolling Mean') plt.show() def draw_ts(timeSeries): f = plt.figure(facecolor='white') timeSeries.plot(color='blue') plt.show() ''' Unit Root Test The null hypothesis of the Augmented Dickey-Fuller is that there is a unit root, with the alternative that there is no unit root. That is to say the bigger the p-value the more reason we assert that there is a unit root ''' def testStationarity(ts): dftest = adfuller(ts) # 对上述函数求得的值进行语义描述 dfoutput = pd.Series(dftest[0:4], index=['Test Statistic','p-value','#Lags Used','Number of Observations Used']) for key,value in dftest[4].items(): dfoutput['Critical Value (%s)'%key] = value return dfoutput # 自相关和偏相关图,默认阶数为31阶 def draw_acf_pacf(ts, lags=31): f = plt.figure(facecolor='white') ax1 = f.add_subplot(211) plot_acf(ts, lags=31, ax=ax1) ax2 = f.add_subplot(212) plot_pacf(ts, lags=31, ax=ax2) plt.show()
观察法,通俗的说就是通过观察序列的趋势图与相关图是否随着时间的变化呈现出某种规律。所谓的规律就是时间序列经常提到的周期性因素,现实中遇到得比较多的是线性周期成分,这类周期成分可以采用差分或者移动平均来解决,而对于非线性周期成分的处理相对比较复杂,需要采用某些分解的方法。下图为航空数据的线性图,可以明显的看出它具有年周期成分和长期趋势成分。平稳序列的自相关系数会快速衰减,下面的自相关图并不能体现出该特征,所以我们有理由相信该序列是不平稳的。
单位根检验:ADF是一种常用的单位根检验方法,他的原假设为序列具有单位根,即非平稳,对于一个平稳的时序数据,就需要在给定的置信水平上显著,拒绝原假设。ADF只是单位根检验的方法之一,如果想采用其他检验方法,可以安装第三方包arch,里面提供了更加全面的单位根检验方法,个人还是比较钟情ADF检验。以下为检验结果,其p值大于0.99,说明并不能拒绝原假设。
3. 平稳性处理
由前面的分析可知,该序列是不平稳的,然而平稳性是时间序列分析的前提条件,故我们需要对不平稳的序列进行处理将其转换成平稳的序列。
a. 对数变换
对数变换主要是为了减小数据的振动幅度,使其线性规律更加明显(我是这么理解的时间序列模型大部分都是线性的,为了尽量降低非线性的因素,需要对其进行预处理,也许我理解的不对)。对数变换相当于增加了一个惩罚机制,数据越大其惩罚越大,数据越小惩罚越小。这里强调一下,变换的序列需要满足大于0,小于0的数据不存在对数变换。
ts_log = np.log(ts)
test_stationarity.draw_ts(ts_log)
b. 平滑法
根据平滑技术的不同,平滑法具体分为移动平均法和指数平均法。
移动平均即利用一定时间间隔内的平均值作为某一期的估计值,而指数平均则是用变权的方法来计算均值
test_stationarity.draw_trend(ts_log, 12)
从上图可以发现窗口为12的移动平均能较好的剔除年周期性因素,而指数平均法是对周期内的数据进行了加权,能在一定程度上减小年周期因素,但并不能完全剔除,如要完全剔除可以进一步进行差分操作。
c. 差分
时间序列最常用来剔除周期性因素的方法当属差分了,它主要是对等周期间隔的数据进行线性求减。前面我们说过,ARIMA模型相对ARMA模型,仅多了差分操作,ARIMA模型几乎是所有时间序列软件都支持的,差分的实现与还原都非常方便。而statsmodel中,对差分的支持不是很好,它不支持高阶和多阶差分,为什么不支持,这里引用作者的说法:
作者大概的意思是说预测方法中并没有解决高于2阶的差分,有没有感觉很牵强,不过没关系,我们有pandas。我们可以先用pandas将序列差分好,然后在对差分好的序列进行ARIMA拟合,只不过这样后面会多了一步人工还原的工作。
diff_12 = ts_log.diff(12)
diff_12.dropna(inplace=True) diff_12_1 = diff_12.diff(1) diff_12_1.dropna(inplace=True) test_stationarity.testStationarity(diff_12_1)
从上面的统计检验结果可以看出,经过12阶差分和1阶差分后,该序列满足平稳性的要求了。
d. 分解
所谓分解就是将时序数据分离成不同的成分。statsmodels使用的X-11分解过程,它主要将时序数据分离成长期趋势、季节趋势和随机成分。与其它统计软件一样,statsmodels也支持两类分解模型,加法模型和乘法模型,这里我只实现加法,乘法只需将model的参数设置为"multiplicative"即可。
from statsmodels.tsa.seasonal import seasonal_decompose decomposition = seasonal_decompose(ts_log, model="additive") trend = decomposition.trend seasonal = decomposition.seasonal residual = decomposition.resid
得到不同的分解成分后,就可以使用时间序列模型对各个成分进行拟合,当然也可以选择其他预测方法。我曾经用过小波对时序数据进行过分解,然后分别采用时间序列拟合,效果还不错。由于我对小波的理解不是很好,只能简单的调用接口,如果有谁对小波、傅里叶、卡尔曼理解得比较透,可以将时序数据进行更加准确的分解,由于分解后的时序数据避免了他们在建模时的交叉影响,所以我相信它将有助于预测准确性的提高。
4. 模型识别
在前面的分析可知,该序列具有明显的年周期与长期成分。对于年周期成分我们使用窗口为12的移动平进行处理,对于长期趋势成分我们采用1阶差分来进行处理。
rol_mean = ts_log.rolling(window=12).mean()
rol_mean.dropna(inplace=True) ts_diff_1 = rol_mean.diff(1) ts_diff_1.dropna(inplace=True) test_stationarity.testStationarity(ts_diff_1)
观察其统计量发现该序列在置信水平为95%的区间下并不显著,我们对其进行再次一阶差分。再次差分后的序列其自相关具有快速衰减的特点,t统计量在99%的置信水平下是显著的,这里我不再做详细说明。
ts_diff_2 = ts_diff_1.diff(1)
ts_diff_2.dropna(inplace=True)
数据平稳后,需要对模型定阶,即确定p、q的阶数。观察上图,发现自相关和偏相系数都存在拖尾的特点,并且他们都具有明显的一阶相关性,所以我们设定p=1, q=1。下面就可以使用ARMA模型进行数据拟合了。这里我不使用ARIMA(ts_diff_1, order=(1, 1, 1))进行拟合,是因为含有差分操作时,预测结果还原老出问题,至今还没弄明白。
from statsmodels.tsa.arima_model import ARMA model = ARMA(ts_diff_2, order=(1, 1)) result_arma = model.fit( disp=-1, method='css')
5. 样本拟合
模型拟合完后,我们就可以对其进行预测了。由于ARMA拟合的是经过相关预处理后的数据,故其预测值需要通过相关逆变换进行还原。
predict_ts = result_arma.predict()
# 一阶差分还原 diff_shift_ts = ts_diff_1.shift(1) diff_recover_1 = predict_ts.add(diff_shift_ts) # 再次一阶差分还原 rol_shift_ts = rol_mean.shift(1) diff_recover = diff_recover_1.add(rol_shift_ts) # 移动平均还原 rol_sum = ts_log.rolling(window=11).sum() rol_recover = diff_recover*12 - rol_sum.shift(1) # 对数还原 log_recover = np.exp(rol_recover) log_recover.dropna(inplace=True)
我们使用均方根误差(RMSE)来评估模型样本内拟合的好坏。利用该准则进行判别时,需要剔除“非预测”数据的影响。
ts = ts[log_recover.index] # 过滤没有预测的记录 plt.figure(facecolor='white') log_recover.plot(color='blue', label='Predict') ts.plot(color='red', label='Original') plt.legend(loc='best') plt.title('RMSE: %.4f'% np.sqrt(sum((log_recover-ts)**2)/ts.size)) plt.show()
观察上图的拟合效果,均方根误差为11.8828,感觉还过得去。
6. 完善ARIMA模型
前面提到statsmodels里面的ARIMA模块不支持高阶差分,我们的做法是将差分分离出来,但是这样会多了一步人工还原的操作。基于上述问题,我将差分过程进行了封装,使序列能按照指定的差分列表依次进行差分,并相应的构造了一个还原的方法,实现差分序列的自动还原。
# 差分操作 def diff_ts(ts, d): global shift_ts_list # 动态预测第二日的值时所需要的差分序列 global last_data_shift_list shift_ts_list = [] last_data_shift_list = [] tmp_ts = ts for i in d: last_data_shift_list.append(tmp_ts[-i]) print last_data_shift_list shift_ts = tmp_ts.shift(i) shift_ts_list.append(shift_ts) tmp_ts = tmp_ts - shift_ts tmp_ts.dropna(inplace=True) return tmp_ts # 还原操作 def predict_diff_recover(predict_value, d): if isinstance(predict_value, float): tmp_data = predict_value for i in range(len(d)): tmp_data = tmp_data + last_data_shift_list[-i-1] elif isinstance(predict_value, np.ndarray): tmp_data = predict_value[0] for i in range(len(d)): tmp_data = tmp_data + last_data_shift_list[-i-1] else: tmp_data = predict_value for i in range(len(d)): try: tmp_data = tmp_data.add(shift_ts_list[-i-1]) except: raise ValueError('What you input is not pd.Series type!') tmp_data.dropna(inplace=True) return tmp_data
现在我们直接使用差分的方法进行数据处理,并以同样的过程进行数据预测与还原。
diffed_ts = diff_ts(ts_log, d=[12, 1])
model = arima_model(diffed_ts) model.certain_model(1, 1) predict_ts = model.properModel.predict() diff_recover_ts = predict_diff_recover(predict_ts, d=[12, 1]) log_recover = np.exp(diff_recover_ts)
是不是发现这里的预测结果和上一篇的使用12阶移动平均的预测结果一模一样。这是因为12阶移动平均加上一阶差分与直接12阶差分是等价的关系,后者是前者数值的12倍,这个应该不难推导。
对于个数不多的时序数据,我们可以通过观察自相关图和偏相关图来进行模型识别,倘若我们要分析的时序数据量较多,例如要预测每只股票的走势,我们就不可能逐个去调参了。这时我们可以依据BIC准则识别模型的p, q值,通常认为BIC值越小的模型相对更优。这里我简单介绍一下BIC准则,它综合考虑了残差大小和自变量的个数,残差越小BIC值越小,自变量个数越多BIC值越大。个人觉得BIC准则就是对模型过拟合设定了一个标准(过拟合这东西应该以辩证的眼光看待)。
def proper_model(data_ts, maxLag): init_bic = sys.maxint init_p = 0 init_q = 0 init_properModel = None for p in np.arange(maxLag): for q in np.arange(maxLag): model = ARMA(data_ts, order=(p, q)) try: results_ARMA = model.fit(disp=-1, method='css') except: continue bic = results_ARMA.bic if bic < init_bic: init_p = p init_q = q init_properModel = results_ARMA init_bic = bic return init_bic, init_p, init_q, init_properModel
相对最优参数识别结果:BIC: -1090.44209358 p: 0 q: 1 , RMSE:11.8817198331。我们发现模型自动识别的参数要比我手动选取的参数更优。
7.滚动预测
所谓滚动预测是指通过添加最新的数据预测第二天的值。对于一个稳定的预测模型,不需要每天都去拟合,我们可以给他设定一个阀值,例如每周拟合一次,该期间只需通过添加最新的数据实现滚动预测即可。基于此我编写了一个名为arima_model的类,主要包含模型自动识别方法,滚动预测的功能,详细代码可以查看附录。数据的动态添加:
from dateutil.relativedelta import relativedelta
def _add_new_data(ts, dat, type='day'):
if type == 'day': new_index = ts.index[-1] + relativedelta(days=1) elif type == 'month': new_index = ts.index[-1] + relativedelta(months=1) ts[new_index] = dat def add_today_data(model, ts, data, d, type='day'): _add_new_data(ts, data, type) # 为原始序列添加数据 # 为滞后序列添加新值 d_ts = diff_ts(ts, d) model.add_today_data(d_ts[-1], type) def forecast_next_day_data(model, type='day'): if model == None: raise ValueError('No model fit before') fc = model.forecast_next_day_value(type) return predict_diff_recover(fc, [12, 1])
现在我们就可以使用滚动预测的方法向外预测了,取1957年之前的数据作为训练数据,其后的数据作为测试,并设定模型每第七天就会重新拟合一次。这里的diffed_ts对象会随着add_today_data方法自动添加数据,这是由于它与add_today_data方法中的d_ts指向的同一对象,该对象会动态的添加数据。
ts_train = ts_log[:'1956-12'] ts_test = ts_log['1957-1':] diffed_ts = diff_ts(ts_train, [12, 1]) forecast_list = [] for i, dta in enumerate(ts_test): if i%7 == 0: model = arima_model(diffed_ts) model.certain_model(1, 1) forecast_data = forecast_next_day_data(model, type='month') forecast_list.append(forecast_data) add_today_data(model, ts_train, dta, [12, 1], type='month') predict_ts = pd.Series(data=forecast_list, index=ts['1957-1':].index) log_recover = np.exp(predict_ts) original_ts = ts['1957-1':]
动态预测的均方根误差为:14.6479,与前面样本内拟合的均方根误差相差不大,说明模型并没有过拟合,并且整体预测效果都较好。
8. 模型序列化
在进行动态预测时,我们不希望将整个模型一直在内存中运行,而是希望有新的数据到来时才启动该模型。这时我们就应该把整个模型从内存导出到硬盘中,而序列化正好能满足该要求。序列化最常用的就是使用json模块了,但是它是时间对象支持得不是很好,有人对json模块进行了拓展以使得支持时间对象,这里我们不采用该方法,我们使用pickle模块,它和json的接口基本相同,有兴趣的可以去查看一下。我在实际应用中是采用的面向对象的编程,它的序列化主要是将类的属性序列化即可,而在面向过程的编程中,模型序列化需要将需要序列化的对象公有化,这样会使得对前面函数的参数改动较大,我不在详细阐述该过程。
总结
与其它统计语言相比,python在统计分析这块还显得不那么“专业”。随着numpy、pandas、scipy、sklearn、gensim、statsmodels等包的推动,我相信也祝愿python在数据分析这块越来越好。与SAS和R相比,python的时间序列模块还不是很成熟,我这里仅起到抛砖引玉的作用,希望各位能人志士能贡献自己的力量,使其更加完善。实际应用中我全是面向过程来编写的,为了阐述方便,我用面向过程重新罗列了一遍,实在感觉很不方便。原本打算分三篇来写的,还有一部分实际应用的部分,不打算再写了,还请大家原谅。实际应用主要是具体问题具体分析,这当中第一步就是要查询问题,这步花的时间往往会比较多,然后再是解决问题。以我前面项目遇到的问题为例,当时遇到了以下几个典型的问题:1.周期长度不恒定的周期成分,例如每月的1号具有周期性,但每月1号与1号之间的时间间隔是不相等的;2.含有缺失值以及含有记录为0的情况无法进行对数变换;3.节假日的影响等等。
1 # -*-coding:utf-8-*- 2 import pandas as pd 3 import numpy as np 4 from statsmodels.tsa.arima_model import ARMA 5 import sys 6 from dateutil.relativedelta import relativedelta 7 from copy import deepcopy 8 import matplotlib.pyplot as plt 9 10 class arima_model: 11 12 def __init__(self, ts, maxLag=9): 13 self.data_ts = ts 14 self.resid_ts = None 15 self.predict_ts = None 16 self.maxLag = maxLag 17 self.p = maxLag 18 self.q = maxLag 19 self.properModel = None 20 self.bic = sys.maxint 21 22 # 计算最优ARIMA模型,将相关结果赋给相应属性 23 def get_proper_model(self): 24 self._proper_model() 25 self.predict_ts = deepcopy(self.properModel.predict()) 26 self.resid_ts = deepcopy(self.properModel.resid) 27 28 # 对于给定范围内的p,q计算拟合得最好的arima模型,这里是对差分好的数据进行拟合,故差分恒为0 29 def _proper_model(self): 30 for p in np.arange(self.maxLag): 31 for q in np.arange(self.maxLag): 32 # print p,q,self.bic 33 model = ARMA(self.data_ts, order=(p, q)) 34 try: 35 results_ARMA = model.fit(disp=-1, method='css') 36 except: 37 continue 38 bic = results_ARMA.bic 39 # print 'bic:',bic,'self.bic:',self.bic 40 if bic < self.bic: 41 self.p = p 42 self.q = q 43 self.properModel = results_ARMA 44 self.bic = bic 45 self.resid_ts = deepcopy(self.properModel.resid) 46 self.predict_ts = self.properModel.predict() 47 48 # 参数确定模型 49 def certain_model(self, p, q): 50 model = ARMA(self.data_ts, order=(p, q)) 51 try: 52 self.properModel = model.fit( disp=-1, method='css') 53 self.p = p 54 self.q = q 55 self.bic = self.properModel.bic 56 self.predict_ts = self.properModel.predict() 57 self.resid_ts = deepcopy(self.properModel.resid) 58 except: 59 print 'You can not fit the model with this parameter p,q, ' \ 60 'please use the get_proper_model method to get the best model' 61 62 # 预测第二日的值 63 def forecast_next_day_value(self, type='day'): 64 # 我修改了statsmodels包中arima_model的源代码,添加了constant属性,需要先运行forecast方法,为constant赋值 65 self.properModel.forecast() 66 if self.data_ts.index[-1] != self.resid_ts.index[-1]: 67 raise ValueError('''The index is different in data_ts and resid_ts, please add new data to data_ts. 68 If you just want to forecast the next day data without add the real next day data to data_ts, 69 please run the predict method which arima_model included itself''') 70 if not self.properModel: 71 raise ValueError('The arima model have not computed, please run the proper_model method before') 72 para = self.properModel.params 73 74 # print self.properModel.params 75 if self.p == 0: # It will get all the value series with setting self.data_ts[-self.p:] when p is zero 76 ma_value = self.resid_ts[-self.q:] 77 values = ma_value.reindex(index=ma_value.index[::-1]) 78 elif self.q == 0: 79 ar_value = self.data_ts[-self.p:] 80 values = ar_value.reindex(index=ar_value.index[::-1]) 81 else: 82 ar_value = self.data_ts[-self.p:] 83 ar_value = ar_value.reindex(index=ar_value.index[::-1]) 84 ma_value = self.resid_ts[-self.q:] 85 ma_value = ma_value.reindex(index=ma_value.index[::-1]) 86 values = ar_value.append(ma_value) 87 88 predict_value = np.dot(para[1:], values) + self.properModel.constant[0] 89 self._add_new_data(self.predict_ts, predict_value, type) 90 return predict_value 91 92 # 动态添加数据函数,针对索引是月份和日分别进行处理 93 def _add_new_data(self, ts, dat, type='day'): 94 if type == 'day': 95 new_index = ts.index[-1] + relativedelta(days=1) 96 elif type == 'month': 97 new_index = ts.index[-1] + relativedelta(months=1) 98 ts[new_index] = dat 99 100 def add_today_data(self, dat, type='day'): 101 self._add_new_data(self.data_ts, dat, type) 102 if self.data_ts.index[-1] != self.predict_ts.index[-1]: 103 raise ValueError('You must use the forecast_next_day_value method forecast the value of today before') 104 self._add_new_data(self.resid_ts, self.data_ts[-1] - self.predict_ts[-1], type) 105 106 if __name__ == '__main__': 107 df = pd.read_csv('AirPassengers.csv', encoding='utf-8', index_col='date') 108 df.index = pd.to_datetime(df.index) 109 ts = df['x'] 110 111 # 数据预处理 112 ts_log = np.log(ts) 113 rol_mean = ts_log.rolling(window=12).mean() 114 rol_mean.dropna(inplace=True) 115 ts_diff_1 = rol_mean.diff(1) 116 ts_diff_1.dropna(inplace=True) 117 ts_diff_2 = ts_diff_1.diff(1) 118 ts_diff_2.dropna(inplace=True) 119 120 # 模型拟合 121 model = arima_model(ts_diff_2) 122 # 这里使用模型参数自动识别 123 model.get_proper_model() 124 print 'bic:', model.bic, 'p:', model.p, 'q:', model.q 125 print model.properModel.forecast()[0] 126 print model.forecast_next_day_value(type='month') 127 128 # 预测结果还原 129 predict_ts = model.properModel.predict() 130 diff_shift_ts = ts_diff_1.shift(1) 131 diff_recover_1 = predict_ts.add(diff_shift_ts) 132 rol_shift_ts = rol_mean.shift(1) 133 diff_recover = diff_recover_1.add(rol_shift_ts) 134 rol_sum = ts_log.rolling(window=11).sum() 135 rol_recover = diff_recover*12 - rol_sum.shift(1) 136 log_recover = np.exp(rol_recover) 137 log_recover.dropna(inplace=True) 138 139 # 预测结果作图 140 ts = ts[log_recover.index] 141 plt.figure(facecolor='white') 142 log_recover.plot(color='blue', label='Predict') 143 ts.plot(color='red', label='Original') 144 plt.legend(loc='best') 145 plt.title('RMSE: %.4f'% np.sqrt(sum((log_recover-ts)**2)/ts.size)) 146 plt.show()
修改的arima_model代码
1 # Note: The information criteria add 1 to the number of parameters 2 # whenever the model has an AR or MA term since, in principle, 3 # the variance could be treated as a free parameter and restricted 4 # This code does not allow this, but it adds consistency with other 5 # packages such as gretl and X12-ARIMA 6 7 from __future__ import absolute_import 8 from statsmodels.compat.python import string_types, range 9 # for 2to3 with extensions 10 11 from datetime import datetime 12 13 import numpy as np 14 from scipy import optimize 15 from scipy.stats import t, norm 16 from scipy.signal import lfilter 17 from numpy import dot, log, zeros, pi 18 from numpy.linalg import inv 19 20 from statsmodels.tools.decorators import (cache_readonly, 21 resettable_cache) 22 import statsmodels.tsa.base.tsa_model as tsbase 23 import statsmodels.base.wrapper as wrap 24 from statsmodels.regression.linear_model import yule_walker, GLS 25 from statsmodels.tsa.tsatools import (lagmat, add_trend, 26 _ar_transparams, _ar_invtransparams, 27 _ma_transparams, _ma_invtransparams, 28 unintegrate, unintegrate_levels) 29 from statsmodels.tsa.vector_ar import util 30 from statsmodels.tsa.ar_model import AR 31 from statsmodels.tsa.arima_process import arma2ma 32 from statsmodels.tools.numdiff import approx_hess_cs, approx_fprime_cs 33 from statsmodels.tsa.base.datetools import _index_date 34 from statsmodels.tsa.kalmanf import KalmanFilter 35 36 _armax_notes = """ 37 38 Notes 39 ----- 40 If exogenous variables are given, then the model that is fit is 41 42 .. math:: 43 44 \\phi(L)(y_t - X_t\\beta) = \\theta(L)\epsilon_t 45 46 where :math:`\\phi` and :math:`\\theta` are polynomials in the lag 47 operator, :math:`L`. This is the regression model with ARMA errors, 48 or ARMAX model. This specification is used, whether or not the model 49 is fit using conditional sum of square or maximum-likelihood, using 50 the `method` argument in 51 :meth:`statsmodels.tsa.arima_model.%(Model)s.fit`. Therefore, for 52 now, `css` and `mle` refer to estimation methods only. This may 53 change for the case of the `css` model in future versions. 54 """ 55 56 _arma_params = """\ 57 endog : array-like 58 The endogenous variable. 59 order : iterable 60 The (p,q) order of the model for the number of AR parameters, 61 differences, and MA parameters to use. 62 exog : array-like, optional 63 An optional arry of exogenous variables. This should *not* include a 64 constant or trend. You can specify this in the `fit` method.""" 65 66 _arma_model = "Autoregressive Moving Average ARMA(p,q) Model" 67 68 _arima_model = "Autoregressive Integrated Moving Average ARIMA(p,d,q) Model" 69 70 _arima_params = """\ 71 endog : array-like 72 The endogenous variable. 73 order : iterable 74 The (p,d,q) order of the model for the number of AR parameters, 75 differences, and MA parameters to use. 76 exog : array-like, optional 77 An optional arry of exogenous variables. This should *not* include a 78 constant or trend. You can specify this in the `fit` method.""" 79 80 _predict_notes = """ 81 Notes 82 ----- 83 Use the results predict method instead. 84 """ 85 86 _results_notes = """ 87 Notes 88 ----- 89 It is recommended to use dates with the time-series models, as the 90 below will probably make clear. However, if ARIMA is used without 91 dates and/or `start` and `end` are given as indices, then these 92 indices are in terms of the *original*, undifferenced series. Ie., 93 given some undifferenced observations:: 94 95 1970Q1, 1 96 1970Q2, 1.5 97 1970Q3, 1.25 98 1970Q4, 2.25 99 1971Q1, 1.2 100 1971Q2, 4.1 101 102 1970Q1 is observation 0 in the original series. However, if we fit an 103 ARIMA(p,1,q) model then we lose this first observation through 104 differencing. Therefore, the first observation we can forecast (if 105 using exact MLE) is index 1. In the differenced series this is index 106 0, but we refer to it as 1 from the original series. 107 """ 108 109 _predict = """ 110 %(Model)s model in-sample and out-of-sample prediction 111 112 Parameters 113 ---------- 114 %(params)s 115 start : int, str, or datetime 116 Zero-indexed observation number at which to start forecasting, ie., 117 the first forecast is start. Can also be a date string to 118 parse or a datetime type. 119 end : int, str, or datetime 120 Zero-indexed observation number at which to end forecasting, ie., 121 the first forecast is start. Can also be a date string to 122 parse or a datetime type. However, if the dates index does not 123 have a fixed frequency, end must be an integer index if you 124 want out of sample prediction. 125 exog : array-like, optional 126 If the model is an ARMAX and out-of-sample forecasting is 127 requested, exog must be given. Note that you'll need to pass 128 `k_ar` additional lags for any exogenous variables. E.g., if you 129 fit an ARMAX(2, q) model and want to predict 5 steps, you need 7 130 observations to do this. 131 dynamic : bool, optional 132 The `dynamic` keyword affects in-sample prediction. If dynamic 133 is False, then the in-sample lagged values are used for 134 prediction. If `dynamic` is True, then in-sample forecasts are 135 used in place of lagged dependent variables. The first forecasted 136 value is `start`. 137 %(extra_params)s 138 139 Returns 140 ------- 141 %(returns)s 142 %(extra_section)s 143 """ 144 145 _predict_returns = """predict : array 146 The predicted values. 147 148 """ 149 150 _arma_predict = _predict % {"Model" : "ARMA", 151 "params" : """ 152 params : array-like 153 The fitted parameters of the model.""", 154 "extra_params" : "", 155 "returns" : _predict_returns, 156 "extra_section" : _predict_notes} 157 158 _arma_results_predict = _predict % {"Model" : "ARMA", "params" : "", 159 "extra_params" : "", 160 "returns" : _predict_returns, 161 "extra_section" : _results_notes} 162 163 _arima_predict = _predict % {"Model" : "ARIMA", 164 "params" : """params : array-like 165 The fitted parameters of the model.""", 166 "extra_params" : """typ : str {'linear', 'levels'} 167 168 - 'linear' : Linear prediction in terms of the differenced 169 endogenous variables. 170 - 'levels' : Predict the levels of the original endogenous 171 variables.\n""", "returns" : _predict_returns, 172 "extra_section" : _predict_notes} 173 174 _arima_results_predict = _predict % {"Model" : "ARIMA", 175 "params" : "", 176 "extra_params" : 177 """typ : str {'linear', 'levels'} 178 179 - 'linear' : Linear prediction in terms of the differenced 180 endogenous variables. 181 - 'levels' : Predict the levels of the original endogenous 182 variables.\n""", 183 "returns" : _predict_returns, 184 "extra_section" : _results_notes} 185 186 _arima_plot_predict_example = """ Examples 187 -------- 188 >>> import statsmodels.api as sm 189 >>> import matplotlib.pyplot as plt 190 >>> import pandas as pd 191 >>> 192 >>> dta = sm.datasets.sunspots.load_pandas().data[['SUNACTIVITY']] 193 >>> dta.index = pd.DatetimeIndex(start='1700', end='2009', freq='A') 194 >>> res = sm.tsa.ARMA(dta, (3, 0)).fit() 195 >>> fig, ax = plt.subplots() 196 >>> ax = dta.ix['1950':].plot(ax=ax) 197 >>> fig = res.plot_predict('1990', '2012', dynamic=True, ax=ax, 198 ... plot_insample=False) 199 >>> plt.show() 200 201 .. plot:: plots/arma_predict_plot.py 202 """ 203 204 _plot_predict = (""" 205 Plot forecasts 206 """ + '\n'.join(_predict.split('\n')[2:])) % { 207 "params" : "", 208 "extra_params" : """alpha : float, optional 209 The confidence intervals for the forecasts are (1 - alpha)% 210 plot_insample : bool, optional 211 Whether to plot the in-sample series. Default is True. 212 ax : matplotlib.Axes, optional 213 Existing axes to plot with.""", 214 "returns" : """fig : matplotlib.Figure 215 The plotted Figure instance""", 216 "extra_section" : ('\n' + _arima_plot_predict_example + 217 '\n' + _results_notes) 218 } 219 220 _arima_plot_predict = (""" 221 Plot forecasts 222 """ + '\n'.join(_predict.split('\n')[2:])) % { 223 "params" : "", 224 "extra_params" : """alpha : float, optional 225 The confidence intervals for the forecasts are (1 - alpha)% 226 plot_insample : bool, optional 227 Whether to plot the in-sample series. Default is True. 228 ax : matplotlib.Axes, optional 229 Existing axes to plot with.""", 230 "returns" : """fig : matplotlib.Figure 231 The plotted Figure instance""", 232 "extra_section" : ('\n' + _arima_plot_predict_example + 233 '\n' + 234 '\n'.join(_results_notes.split('\n')[:3]) + 235 (""" 236 This is hard-coded to only allow plotting of the forecasts in levels. 237 """) + 238 '\n'.join(_results_notes.split('\n')[3:])) 239 } 240 241 242 def cumsum_n(x, n): 243 if n: 244 n -= 1 245 x = np.cumsum(x) 246 return cumsum_n(x, n) 247 else: 248 return x 249 250 251 def _check_arima_start(start, k_ar, k_diff, method, dynamic): 252 if start < 0: 253 raise ValueError("The start index %d of the original series " 254 "has been differenced away" % start) 255 elif (dynamic or 'mle' not in method) and start < k_ar: 256 raise ValueError("Start must be >= k_ar for conditional MLE " 257 "or dynamic forecast. Got %d" % start) 258 259 260 def _get_predict_out_of_sample(endog, p, q, k_trend, k_exog, start, errors, 261 trendparam, exparams, arparams, maparams, steps, 262 method, exog=None): 263 """ 264 Returns endog, resid, mu of appropriate length for out of sample 265 prediction. 266 """ 267 if q: 268 resid = np.zeros(q) 269 if start and 'mle' in method or (start == p and not start == 0): 270 resid[:q] = errors[start-q:start] 271 elif start: 272 resid[:q] = errors[start-q-p:start-p] 273 else: 274 resid[:q] = errors[-q:] 275 else: 276 resid = None 277 278 y = endog 279 if k_trend == 1: 280 # use expectation not constant 281 if k_exog > 0: 282 #TODO: technically should only hold for MLE not 283 # conditional model. See #274. 284 # ensure 2-d for conformability 285 if np.ndim(exog) == 1 and k_exog == 1: 286 # have a 1d series of observations -> 2d 287 exog = exog[:, None] 288 elif np.ndim(exog) == 1: 289 # should have a 1d row of exog -> 2d 290 if len(exog) != k_exog: 291 raise ValueError("1d exog given and len(exog) != k_exog") 292 exog = exog[None, :] 293 X = lagmat(np.dot(exog, exparams), p, original='in', trim='both') 294 mu = trendparam * (1 - arparams.sum()) 295 # arparams were reversed in unpack for ease later 296 mu = mu + (np.r_[1, -arparams[::-1]] * X).sum(1)[:, None] 297 else: 298 mu = trendparam * (1 - arparams.sum()) 299 mu = np.array([mu]*steps) 300 elif k_exog > 0: 301 X = np.dot(exog, exparams) 302 #NOTE: you shouldn't have to give in-sample exog! 303 X = lagmat(X, p, original='in', trim='both') 304 mu = (np.r_[1, -arparams[::-1]] * X).sum(1)[:, None] 305 else: 306 mu = np.zeros(steps) 307 308 endog = np.zeros(p + steps - 1) 309 310 if p and start: 311 endog[:p] = y[start-p:start] 312 elif p: 313 endog[:p] = y[-p:] 314 315 return endog, resid, mu 316 317 318 def _arma_predict_out_of_sample(params, steps, errors, p, q, k_trend, k_exog, 319 endog, exog=None, start=0, method='mle'): 320 (trendparam, exparams, 321 arparams, maparams) = _unpack_params(params, (p, q), k_trend, 322 k_exog, reverse=True) 323 # print 'params:',params 324 # print 'arparams:',arparams,'maparams:',maparams 325 endog, resid, mu = _get_predict_out_of_sample(endog, p, q, k_trend, k_exog, 326 start, errors, trendparam, 327 exparams, arparams, 328 maparams, steps, method, 329 exog) 330 # print 'mu[-1]:',mu[-1], 'mu[0]:',mu[0] 331 forecast = np.zeros(steps) 332 if steps == 1: 333 if q: 334 return mu[0] + np.dot(arparams, endog[:p]) + np.dot(maparams, 335 resid[:q]), mu[0] 336 else: 337 return mu[0] + np.dot(arparams, endog[:p]), mu[0] 338 339 if q: 340 i = 0 # if q == 1 341 else: 342 i = -1 343 344 for i in range(min(q, steps - 1)): 345 fcast = (mu[i] + np.dot(arparams, endog[i:i + p]) + 346 np.dot(maparams[:q - i], resid[i:i + q])) 347 forecast[i] = fcast 348 endog[i+p] = fcast 349 350 for i in range(i + 1, steps - 1): 351 fcast = mu[i] + np.dot(arparams, endog[i:i+p]) 352 forecast[i] = fcast 353 endog[i+p] = fcast 354 355 #need to do one more without updating endog 356 forecast[-1] = mu[-1] + np.dot(arparams, endog[steps - 1:]) 357 return forecast, mu[-1] #Modified by me, the former is return forecast 358 359 360 def _arma_predict_in_sample(start, end, endog, resid, k_ar, method): 361 """ 362 Pre- and in-sample fitting for ARMA. 363 """ 364 if 'mle' in method: 365 fittedvalues = endog - resid # get them all then trim 366 else: 367 fittedvalues = endog[k_ar:] - resid 368 369 fv_start = start 370 if 'mle' not in method: 371 fv_start -= k_ar # start is in terms of endog index 372 fv_end = min(len(fittedvalues), end + 1) 373 return fittedvalues[fv_start:fv_end] 374 375 376 def _validate(start, k_ar, k_diff, dates, method): 377 if isinstance(start, (string_types, datetime)): 378 start = _index_date(start, dates) 379 start -= k_diff 380 if 'mle' not in method and start < k_ar - k_diff: 381 raise ValueError("Start must be >= k_ar for conditional " 382 "MLE or dynamic forecast. Got %s" % start) 383 384 return start 385 386 387 def _unpack_params(params, order, k_trend, k_exog, reverse=False): 388 p, q = order 389 k = k_trend + k_exog 390 maparams = params[k+p:] 391 arparams = params[k:k+p] 392 trend = params[:k_trend] 393 exparams = params[k_trend:k] 394 if reverse: 395 return trend, exparams, arparams[::-1], maparams[::-1] 396 return trend, exparams, arparams, maparams 397 398 399 def _unpack_order(order): 400 k_ar, k_ma, k = order 401 k_lags = max(k_ar, k_ma+1) 402 return k_ar, k_ma, order, k_lags 403 404 405 def _make_arma_names(data, k_trend, order, exog_names): 406 k_ar, k_ma = order 407 exog_names = exog_names or [] 408 ar_lag_names = util.make_lag_names([data.ynames], k_ar, 0) 409 ar_lag_names = [''.join(('ar.', i)) for i in ar_lag_names] 410 ma_lag_names = util.make_lag_names([data.ynames], k_ma, 0) 411 ma_lag_names = [''.join(('ma.', i)) for i in ma_lag_names] 412 trend_name = util.make_lag_names('', 0, k_trend) 413 exog_names = trend_name + exog_names + ar_lag_names + ma_lag_names 414 return exog_names 415 416 417 def _make_arma_exog(endog, exog, trend): 418 k_trend = 1 # overwritten if no constant 419 if exog is None and trend == 'c': # constant only 420 exog = np.ones((len(endog), 1)) 421 elif exog is not None and trend == 'c': # constant plus exogenous 422 exog = add_trend(exog, trend='c', prepend=True) 423 elif exog is not None and trend == 'nc': 424 # make sure it's not holding constant from last run 425 if exog.var() == 0: 426 exog = None 427 k_trend = 0 428 if trend == 'nc': 429 k_trend = 0 430 return k_trend, exog 431 432 433 def _check_estimable(nobs, n_params): 434 if nobs <= n_params: 435 raise ValueError("Insufficient degrees of freedom to estimate") 436 437 438 class ARMA(tsbase.TimeSeriesModel): 439 440 __doc__ = tsbase._tsa_doc % {"model" : _arma_model, 441 "params" : _arma_params, "extra_params" : "", 442 "extra_sections" : _armax_notes % 443 {"Model" : "ARMA"}} 444 445 def __init__(self, endog, order, exog=None, dates=None, freq=None, 446 missing='none'): 447 super(ARMA, self).__init__(endog, exog, dates, freq, missing=missing) 448 exog = self.data.exog # get it after it's gone through processing 449 _check_estimable(len(self.endog), sum(order)) 450 self.k_ar = k_ar = order[0] 451 self.k_ma = k_ma = order[1] 452 self.k_lags = max(k_ar, k_ma+1) 453 self.constant = 0 #Added by me 454 if exog is not None: 455 if exog.ndim == 1: 456 exog = exog[:, None] 457 k_exog = exog.shape[1] # number of exog. variables excl. const 458 else: 459 k_exog = 0 460 self.k_exog = k_exog 461 462 def _fit_start_params_hr(self, order): 463 """ 464 Get starting parameters for fit. 465 466 Parameters 467 ---------- 468 order : iterable 469 (p,q,k) - AR lags, MA lags, and number of exogenous variables 470 including the constant. 471 472 Returns 473 ------- 474 start_params : array 475 A first guess at the starting parameters. 476 477 Notes 478 ----- 479 If necessary, fits an AR process with the laglength selected according 480 to best BIC. Obtain the residuals. Then fit an ARMA(p,q) model via 481 OLS using these residuals for a first approximation. Uses a separate 482 OLS regression to find the coefficients of exogenous variables. 483 484 References 485 ---------- 486 Hannan, E.J. and Rissanen, J. 1982. "Recursive estimation of mixed 487 autoregressive-moving average order." `Biometrika`. 69.1. 488 """ 489 p, q, k = order 490 start_params = zeros((p+q+k)) 491 endog = self.endog.copy() # copy because overwritten 492 exog = self.exog 493 if k != 0: 494 ols_params = GLS(endog, exog).fit().params 495 start_params[:k] = ols_params 496 endog -= np.dot(exog, ols_params).squeeze() 497 if q != 0: 498 if p != 0: 499 # make sure we don't run into small data problems in AR fit 500 nobs = len(endog) 501 maxlag = int(round(12*(nobs/100.)**(1/4.))) 502 if maxlag >= nobs: 503 maxlag = nobs - 1 504 armod = AR(endog).fit(ic='bic', trend='nc', maxlag=maxlag) 505 arcoefs_tmp = armod.params 506 p_tmp = armod.k_ar 507 # it's possible in small samples that optimal lag-order 508 # doesn't leave enough obs. No consistent way to fix. 509 if p_tmp + q >= len(endog): 510 raise ValueError("Proper starting parameters cannot" 511 " be found for this order with this " 512 "number of observations. Use the " 513 "start_params argument.") 514 resid = endog[p_tmp:] - np.dot(lagmat(endog, p_tmp, 515 trim='both'), 516 arcoefs_tmp) 517 if p < p_tmp + q: 518 endog_start = p_tmp + q - p 519 resid_start = 0 520 else: 521 endog_start = 0 522 resid_start = p - p_tmp - q 523 lag_endog = lagmat(endog, p, 'both')[endog_start:] 524 lag_resid = lagmat(resid, q, 'both')[resid_start:] 525 # stack ar lags and resids 526 X = np.column_stack((lag_endog, lag_resid)) 527 coefs = GLS(endog[max(p_tmp + q, p):], X).fit().params 528 start_params[k:k+p+q] = coefs 529 else: 530 start_params[k+p:k+p+q] = yule_walker(endog, order=q)[0] 531 if q == 0 and p != 0: 532 arcoefs = yule_walker(endog, order=p)[0] 533 start_params[k:k+p] = arcoefs 534 535 # check AR coefficients 536 if p and not np.all(np.abs(np.roots(np.r_[1, -start_params[k:k + p]] 537 )) < 1): 538 raise ValueError("The computed initial AR coefficients are not " 539 "stationary\nYou should induce stationarity, " 540 "choose a different model order, or you can\n" 541 "pass your own start_params.") 542 # check MA coefficients 543 elif q and not np.all(np.abs(np.roots(np.r_[1, start_params[k + p:]] 544 )) < 1): 545 return np.zeros(len(start_params)) #modified by me 546 raise ValueError("The computed initial MA coefficients are not " 547 "invertible\nYou should induce invertibility, " 548 "choose a different model order, or you can\n" 549 "pass your own start_params.") 550 551 # check MA coefficients 552 # print start_params 553 return start_params 554 555 def _fit_start_params(self, order, method): 556 if method != 'css-mle': # use Hannan-Rissanen to get start params 557 start_params = self._fit_start_params_hr(order) 558 else: # use CSS to get start params 559 func = lambda params: -self.loglike_css(params) 560 #start_params = [.1]*(k_ar+k_ma+k_exog) # different one for k? 561 start_params = self._fit_start_params_hr(order) 562 if self.transparams: 563 start_params = self._invtransparams(start_params) 564 bounds = [(None,)*2]*sum(order) 565 mlefit = optimize.fmin_l_bfgs_b(func, start_params, 566 approx_grad=True, m=12, 567 pgtol=1e-7, factr=1e3, 568 bounds=bounds, iprint=-1) 569 start_params = self._transparams(mlefit[0]) 570 return start_params 571 572 def score(self, params): 573 """ 574 Compute the score function at params. 575 576 Notes 577 ----- 578 This is a numerical approximation. 579 """ 580 return approx_fprime_cs(params, self.loglike, args=(False,)) 581 582 def hessian(self, params): 583 """ 584 Compute the Hessian at params, 585 586 Notes 587 ----- 588 This is a numerical approximation. 589 """ 590 return approx_hess_cs(params, self.loglike, args=(False,)) 591 592 def _transparams(self, params): 593 """ 594 Transforms params to induce stationarity/invertability. 595 596 Reference 597 --------- 598 Jones(1980) 599 """ 600 k_ar, k_ma = self.k_ar, self.k_ma 601 k = self.k_exog + self.k_trend 602 newparams = np.zeros_like(params) 603 604 # just copy exogenous parameters 605 if k != 0: 606 newparams[:k] = params[:k] 607 608 # AR Coeffs 609 if k_ar != 0: 610 newparams[k:k+k_ar] = _ar_transparams(params[k:k+k_ar].copy()) 611 612 # MA Coeffs 613 if k_ma != 0: 614 newparams[k+k_ar:] = _ma_transparams(params[k+k_ar:].copy()) 615 return newparams 616 617 def _invtransparams(self, start_params): 618 """ 619 Inverse of the Jones reparameterization 620 """ 621 k_ar, k_ma = self.k_ar, self.k_ma 622 k = self.k_exog + self.k_trend 623 newparams = start_params.copy() 624 arcoefs = newparams[k:k+k_ar] 625 macoefs = newparams[k+k_ar:] 626 # AR coeffs 627 if k_ar != 0: 628 newparams[k:k+k_ar] = _ar_invtransparams(arcoefs) 629 630 # MA coeffs 631 if k_ma != 0: 632 newparams[k+k_ar:k+k_ar+k_ma] = _ma_invtransparams(macoefs) 633 return newparams 634 635 def _get_predict_start(self, start, dynamic): 636 # do some defaults 637 method = getattr(self, 'method', 'mle') 638 k_ar = getattr(self, 'k_ar', 0) 639 k_diff = getattr(self, 'k_diff', 0) 640 if start is None: 641 if 'mle' in method and not dynamic: 642 start = 0 643 else: 644 start = k_ar 645 self._set_predict_start_date(start) # else it's done in super 646 elif isinstance(start, int): 647 start = super(ARMA, self)._get_predict_start(start) 648 else: # should be on a date 649 #elif 'mle' not in method or dynamic: # should be on a date 650 start = _validate(start, k_ar, k_diff, self.data.dates, 651 method) 652 start = super(ARMA, self)._get_predict_start(start) 653 _check_arima_start(start, k_ar, k_diff, method, dynamic) 654 return start 655 656 def _get_predict_end(self, end, dynamic=False): 657 # pass through so predict works for ARIMA and ARMA 658 return super(ARMA, self)._get_predict_end(end) 659 660 def geterrors(self, params): 661 """ 662 Get the errors of the ARMA process. 663 664 Parameters 665 ---------- 666 params : array-like 667 The fitted ARMA parameters 668 order : array-like 669 3 item iterable, with the number of AR, MA, and exogenous 670 parameters, including the trend 671 """ 672 673 #start = self._get_predict_start(start) # will be an index of a date 674 #end, out_of_sample = self._get_predict_end(end) 675 params = np.asarray(params) 676 k_ar, k_ma = self.k_ar, self.k_ma 677 k = self.k_exog + self.k_trend 678 679 method = getattr(self, 'method', 'mle') 680 if 'mle' in method: # use KalmanFilter to get errors 681 (y, k, nobs, k_ar, k_ma, k_lags, newparams, Z_mat, m, R_mat, 682 T_mat, paramsdtype) = KalmanFilter._init_kalman_state(params, 683 self) 684 685 errors = KalmanFilter.geterrors(y, k, k_ar, k_ma, k_lags, nobs, 686 Z_mat, m, R_mat, T_mat, 687 paramsdtype) 688 if isinstance(errors, tuple): 689 errors = errors[0] # non-cython version returns a tuple 690 else: # use scipy.signal.lfilter 691 y = self.endog.copy() 692 k = self.k_exog + self.k_trend 693 if k > 0: 694 y -= dot(self.exog, params[:k]) 695 696 k_ar = self.k_ar 697 k_ma = self.k_ma 698 699 (trendparams, exparams, 700 arparams, maparams) = _unpack_params(params, (k_ar, k_ma), 701 self.k_trend, self.k_exog, 702 reverse=False) 703 b, a = np.r_[1, -arparams], np.r_[1, maparams] 704 zi = zeros((max(k_ar, k_ma))) 705 for i in range(k_ar): 706 zi[i] = sum(-b[:i+1][::-1]*y[:i+1]) 707 e = lfilter(b, a, y, zi=zi) 708 errors = e[0][k_ar:] 709 return errors.squeeze() 710 711 def predict(self, params, start=None, end=None, exog=None, dynamic=False): 712 method = getattr(self, 'method', 'mle') # don't assume fit 713 #params = np.asarray(params) 714 715 # will return an index of a date 716 start = self._get_predict_start(start, dynamic) 717 end, out_of_sample = self._get_predict_end(end, dynamic) 718 if out_of_sample and (exog is None and self.k_exog > 0): 719 raise ValueError("You must provide exog for ARMAX") 720 721 endog = self.endog 722 resid = self.geterrors(params) 723 k_ar = self.k_ar 724 725 if out_of_sample != 0 and self.k_exog > 0: 726 if self.k_exog == 1 and exog.ndim == 1: 727 exog = exog[:, None] 728 # we need the last k_ar exog for the lag-polynomial 729 if self.k_exog > 0 and k_ar > 0: 730 # need the last k_ar exog for the lag-polynomial 731 exog = np.vstack((self.exog[-k_ar:, self.k_trend:], exog)) 732 733 if dynamic: 734 #TODO: now that predict does dynamic in-sample it should 735 # also return error estimates and confidence intervals 736 # but how? len(endog) is not tot_obs 737 out_of_sample += end - start + 1 738 pr, ct = _arma_predict_out_of_sample(params, out_of_sample, resid, 739 k_ar, self.k_ma, self.k_trend, 740 self.k_exog, endog, exog, 741 start, method) 742 self.constant = ct 743 return pr 744 745 predictedvalues = _arma_predict_in_sample(start, end, endog, resid, 746 k_ar, method) 747 if out_of_sample: 748 forecastvalues, ct = _arma_predict_out_of_sample(params, out_of_sample, 749 resid, k_ar, 750 self.k_ma, 751 self.k_trend, 752 self.k_exog, endog, 753 exog, method=method) 754 self.constant = ct 755 predictedvalues = np.r_[predictedvalues, forecastvalues] 756 return predictedvalues 757 predict.__doc__ = _arma_predict 758 759 def loglike(self, params, set_sigma2=True): 760 """ 761 Compute the log-likelihood for ARMA(p,q) model 762 763 Notes 764 ----- 765 Likelihood used depends on the method set in fit 766 """ 767 method = self.method 768 if method in ['mle', 'css-mle']: 769 return self.loglike_kalman(params, set_sigma2) 770 elif method == 'css': 771 return self.loglike_css(params, set_sigma2) 772 else: 773 raise ValueError("Method %s not understood" % method) 774 775 def loglike_kalman(self, params, set_sigma2=True): 776 """ 777 Compute exact loglikelihood for ARMA(p,q) model by the Kalman Filter. 778 """ 779 return KalmanFilter.loglike(params, self, set_sigma2) 780 781 def loglike_css(self, params, set_sigma2=True): 782 """ 783 Conditional Sum of Squares likelihood function. 784 """ 785 k_ar = self.k_ar 786 k_ma = self.k_ma 787 k = self.k_exog + self.k_trend 788 y = self.endog.copy().astype(params.dtype) 789 nobs = self.nobs 790 # how to handle if empty? 791 if self.transparams: 792 newparams = self._transparams(params) 793 else: 794 newparams = params 795 if k > 0: 796 y -= dot(self.exog, newparams[:k]) 797 # the order of p determines how many zeros errors to set for lfilter 798 b, a = np.r_[1, -newparams[k:k + k_ar]], np.r_[1, newparams[k + k_ar:]] 799 zi = np.zeros((max(k_ar, k_ma)), dtype=params.dtype) 800 for i in range(k_ar): 801 zi[i] = sum(-b[:i + 1][::-1] * y[:i + 1]) 802 errors = lfilter(b, a, y, zi=zi)[0][k_ar:] 803 804 ssr = np.dot(errors, errors) 805 sigma2 = ssr/nobs 806 if set_sigma2: 807 self.sigma2 = sigma2 808 llf = -nobs/2.*(log(2*pi) + log(sigma2)) - ssr/(2*sigma2) 809 return llf 810 811 def fit(self, start_params=None, trend='c', method="css-mle", 812 transparams=True, solver='lbfgs', maxiter=50, full_output=1, 813 disp=5, callback=None, **kwargs): 814 """ 815 Fits ARMA(p,q) model using exact maximum likelihood via Kalman filter. 816 817 Parameters 818 ---------- 819 start_params : array-like, optional 820 Starting parameters for ARMA(p,q). If None, the default is given 821 by ARMA._fit_start_params. See there for more information. 822 transparams : bool, optional 823 Whehter or not to transform the parameters to ensure stationarity. 824 Uses the transformation suggested in Jones (1980). If False, 825 no checking for stationarity or invertibility is done. 826 method : str {'css-mle','mle','css'} 827 This is the loglikelihood to maximize. If "css-mle", the 828 conditional sum of squares likelihood is maximized and its values 829 are used as starting values for the computation of the exact 830 likelihood via the Kalman filter. If "mle", the exact likelihood 831 is maximized via the Kalman Filter. If "css" the conditional sum 832 of squares likelihood is maximized. All three methods use 833 `start_params` as starting parameters. See above for more 834 information. 835 trend : str {'c','nc'} 836 Whether to include a constant or not. 'c' includes constant, 837 'nc' no constant. 838 solver : str or None, optional 839 Solver to be used. The default is 'lbfgs' (limited memory 840 Broyden-Fletcher-Goldfarb-Shanno). Other choices are 'bfgs', 841 'newton' (Newton-Raphson), 'nm' (Nelder-Mead), 'cg' - 842 (conjugate gradient), 'ncg' (non-conjugate gradient), and 843 'powell'. By default, the limited memory BFGS uses m=12 to 844 approximate the Hessian, projected gradient tolerance of 1e-8 and 845 factr = 1e2. You can change these by using kwargs. 846 maxiter : int, optional 847 The maximum number of function evaluations. Default is 50. 848 tol : float 849 The convergence tolerance. Default is 1e-08. 850 full_output : bool, optional 851 If True, all output from solver will be available in 852 the Results object's mle_retvals attribute. Output is dependent 853 on the solver. See Notes for more information. 854 disp : bool, optional 855 If True, convergence information is printed. For the default 856 l_bfgs_b solver, disp controls the frequency of the output during 857 the iterations. disp < 0 means no output in this case. 858 callback : function, optional 859 Called after each iteration as callback(xk) where xk is the current 860 parameter vector. 861 kwargs 862 See Notes for keyword arguments that can be passed to fit. 863 864 Returns 865 ------- 866 statsmodels.tsa.arima_model.ARMAResults class 867 868 See also 869 -------- 870 statsmodels.base.model.LikelihoodModel.fit : for more information 871 on using the solvers. 872 ARMAResults : results class returned by fit 873 874 Notes 875 ------ 876 If fit by 'mle', it is assumed for the Kalman Filter that the initial 877 unkown state is zero, and that the inital variance is 878 P = dot(inv(identity(m**2)-kron(T,T)),dot(R,R.T).ravel('F')).reshape(r, 879 r, order = 'F') 880 881 """ 882 k_ar = self.k_ar 883 k_ma = self.k_ma 884 885 # enforce invertibility 886 self.transparams = transparams 887 888 endog, exog = self.endog, self.exog 889 k_exog = self.k_exog 890 self.nobs = len(endog) # this is overwritten if method is 'css' 891 892 # (re)set trend and handle exogenous variables 893 # always pass original exog 894 k_trend, exog = _make_arma_exog(endog, self.exog, trend) 895 896 # Check has something to estimate 897 if k_ar == 0 and k_ma == 0 and k_trend == 0 and k_exog == 0: 898 raise ValueError("Estimation requires the inclusion of least one " 899 "AR term, MA term, a constant or an exogenous " 900 "variable.") 901 902 # check again now that we know the trend 903 _check_estimable(len(endog), k_ar + k_ma + k_exog + k_trend) 904 905 self.k_trend = k_trend 906 self.exog = exog # overwrites original exog from __init__ 907 908 # (re)set names for this model 909 self.exog_names = _make_arma_names(self.data, k_trend, (k_ar, k_ma), 910 self.exog_names) 911 k = k_trend + k_exog 912 913 # choose objective function 914 if k_ma == 0 and k_ar == 0: 915 method = "css" # Always CSS when no AR or MA terms 916 917 self.method = method = method.lower() 918 919 # adjust nobs for css 920 if method == 'css': 921 self.nobs = len(self.endog) - k_ar 922 923 if start_params is not None: 924 start_params = np.asarray(start_params) 925 926 else: # estimate starting parameters 927 start_params = self._fit_start_params((k_ar, k_ma, k), method) 928 929 if transparams: # transform initial parameters to ensure invertibility 930 start_params = self._invtransparams(start_params) 931 932 if solver == 'lbfgs': 933 kwargs.setdefault('pgtol', 1e-8) 934 kwargs.setdefault('factr', 1e2) 935 kwargs.setdefault('m', 12) 936 kwargs.setdefault('approx_grad', True) 937 mlefit = super(ARMA, self).fit(start_params, method=solver, 938 maxiter=maxiter, 939 full_output=full_output, disp=disp, 940 callback=callback, **kwargs) 941 params = mlefit.params 942 943 if transparams: # transform parameters back 944 params = self._transparams(params) 945 946 self.transparams = False # so methods don't expect transf. 947 948 normalized_cov_params = None # TODO: fix this 949 armafit = ARMAResults(self, params, normalized_cov_params) 950 armafit.mle_retvals = mlefit.mle_retvals 951 armafit.mle_settings = mlefit.mle_settings 952 armafit.mlefit = mlefit 953 return ARMAResultsWrapper(armafit) 954 955 956 #NOTE: the length of endog changes when we give a difference to fit 957 #so model methods are not the same on unfit models as fit ones 958 #starting to think that order of model should be put in instantiation... 959 class ARIMA(ARMA): 960 961 __doc__ = tsbase._tsa_doc % {"model" : _arima_model, 962 "params" : _arima_params, "extra_params" : "", 963 "extra_sections" : _armax_notes % 964 {"Model" : "ARIMA"}} 965 966 def __new__(cls, endog, order, exog=None, dates=None, freq=None, 967 missing='none'): 968 p, d, q = order 969 if d == 0: # then we just use an ARMA model 970 return ARMA(endog, (p, q), exog, dates, freq, missing) 971 else: 972 mod = super(ARIMA, cls).__new__(cls) 973 mod.__init__(endog, order, exog, dates, freq, missing) 974 return mod 975 976 def __init__(self, endog, order, exog=None, dates=None, freq=None, 977 missing='none'): 978 p, d, q = order 979 if d > 2: 980 #NOTE: to make more general, need to address the d == 2 stuff 981 # in the predict method 982 raise ValueError("d > 2 is not supported") 983 super(ARIMA, self).__init__(endog, (p, q), exog, dates, freq, missing) 984 self.k_diff = d 985 self._first_unintegrate = unintegrate_levels(self.endog[:d], d) 986 self.endog = np.diff(self.endog, n=d) 987 #NOTE: will check in ARMA but check again since differenced now 988 _check_estimable(len(self.endog), p+q) 989 if exog is not None: 990 self.exog = self.exog[d:] 991 if d == 1: 992 self.data.ynames = 'D.' + self.endog_names 993 else: 994 self.data.ynames = 'D{0:d}.'.format(d) + self.endog_names 995 # what about exog, should we difference it automatically before 996 # super call? 997 998 def _get_predict_start(self, start, dynamic): 999 """ 1000 """ 1001 #TODO: remove all these getattr and move order specification to 1002 # class constructor 1003 k_diff = getattr(self, 'k_diff', 0) 1004 method = getattr(self, 'method', 'mle') 1005 k_ar = getattr(self, 'k_ar', 0) 1006 if start is None: 1007 if 'mle' in method and not dynamic: 1008 start = 0 1009 else: 1010 start = k_ar 1011 elif isinstance(start, int): 1012 start -= k_diff 1013 try: # catch when given an integer outside of dates index 1014 start = super(ARIMA, self)._get_predict_start(start, 1015 dynamic) 1016 except IndexError: 1017 raise ValueError("start must be in series. " 1018 "got %d" % (start + k_diff)) 1019 else: # received a date 1020 start = _validate(start, k_ar, k_diff, self.data.dates, 1021 method) 1022 start = super(ARIMA, self)._get_predict_start(start, dynamic) 1023 # reset date for k_diff adjustment 1024 self._set_predict_start_date(start + k_diff) 1025 return start 1026 1027 def _get_predict_end(self, end, dynamic=False): 1028 """ 1029 Returns last index to be forecast of the differenced array. 1030 Handling of inclusiveness should be done in the predict function. 1031 """ 1032 end, out_of_sample = super(ARIMA, self)._get_predict_end(end, dynamic) 1033 if 'mle' not in self.method and not dynamic: 1034 end -= self.k_ar 1035 1036 return end - self.k_diff, out_of_sample 1037 1038 def fit(self, start_params=None, trend='c', method="css-mle", 1039 transparams=True, solver='lbfgs', maxiter=50, full_output=1, 1040 disp=5, callback=None, **kwargs): 1041 """ 1042 Fits ARIMA(p,d,q) model by exact maximum likelihood via Kalman filter. 1043 1044 Parameters 1045 ---------- 1046 start_params : array-like, optional 1047 Starting parameters for ARMA(p,q). If None, the default is given 1048 by ARMA._fit_start_params. See there for more information. 1049 transparams : bool, optional 1050 Whehter or not to transform the parameters to ensure stationarity. 1051 Uses the transformation suggested in Jones (1980). If False, 1052 no checking for stationarity or invertibility is done. 1053 method : str {'css-mle','mle','css'} 1054 This is the loglikelihood to maximize. If "css-mle", the 1055 conditional sum of squares likelihood is maximized and its values 1056 are used as starting values for the computation of the exact 1057 likelihood via the Kalman filter. If "mle", the exact likelihood 1058 is maximized via the Kalman Filter. If "css" the conditional sum 1059 of squares likelihood is maximized. All three methods use 1060 `start_params` as starting parameters. See above for more 1061 information. 1062 trend : str {'c','nc'} 1063 Whether to include a constant or not. 'c' includes constant, 1064 'nc' no constant. 1065 solver : str or None, optional 1066 Solver to be used. The default is 'lbfgs' (limited memory 1067 Broyden-Fletcher-Goldfarb-Shanno). Other choices are 'bfgs', 1068 'newton' (Newton-Raphson), 'nm' (Nelder-Mead), 'cg' - 1069 (conjugate gradient), 'ncg' (non-conjugate gradient), and 1070 'powell'. By default, the limited memory BFGS uses m=12 to 1071 approximate the Hessian, projected gradient tolerance of 1e-8 and 1072 factr = 1e2. You can change these by using kwargs. 1073 maxiter : int, optional 1074 The maximum number of function evaluations. Default is 50. 1075 tol : float 1076 The convergence tolerance. Default is 1e-08. 1077 full_output : bool, optional 1078 If True, all output from solver will be available in 1079 the Results object's mle_retvals attribute. Output is dependent 1080 on the solver. See Notes for more information. 1081 disp : bool, optional 1082 If True, convergence information is printed. For the default 1083 l_bfgs_b solver, disp controls the frequency of the output during 1084 the iterations. disp < 0 means no output in this case. 1085 callback : function, optional 1086 Called after each iteration as callback(xk) where xk is the current 1087 parameter vector. 1088 kwargs 1089 See Notes for keyword arguments that can be passed to fit. 1090 1091 Returns 1092 ------- 1093 `statsmodels.tsa.arima.ARIMAResults` class 1094 1095 See also 1096 -------- 1097 statsmodels.base.model.LikelihoodModel.fit : for more information 1098 on using the solvers. 1099 ARIMAResults : results class returned by fit 1100 1101 Notes 1102 ------ 1103 If fit by 'mle', it is assumed for the Kalman Filter that the initial 1104 unkown state is zero, and that the inital variance is 1105 P = dot(inv(identity(m**2)-kron(T,T)),dot(R,R.T).ravel('F')).reshape(r, 1106 r, order = 'F') 1107 1108 """ 1109 arima_fit = super(ARIMA, self).fit(start_params, trend, 1110 method, transparams, solver, 1111 maxiter, full_output, disp, 1112 callback, **kwargs) 1113 normalized_cov_params = None # TODO: fix this? 1114 arima_fit = ARIMAResults(self, arima_fit._results.params, 1115 normalized_cov_params) 1116 arima_fit.k_diff = self.k_diff 1117 return ARIMAResultsWrapper(arima_fit) 1118 1119 def predict(self, params, start=None, end=None, exog=None, typ='linear', 1120 dynamic=False): 1121 # go ahead and convert to an index for easier checking 1122 if isinstance(start, (string_types, datetime)): 1123 start = _index_date(start, self.data.dates) 1124 if typ == 'linear': 1125 if not dynamic or (start != self.k_ar + self.k_diff and 1126 start is not None): 1127 return super(ARIMA, self).predict(params, start, end, exog, 1128 dynamic) 1129 else: 1130 # need to assume pre-sample residuals are zero 1131 # do this by a hack 1132 q = self.k_ma 1133 self.k_ma = 0 1134 predictedvalues = super(ARIMA, self).predict(params, start, 1135 end, exog, 1136 dynamic) 1137 self.k_ma = q 1138 return predictedvalues 1139 elif typ == 'levels': 1140 endog = self.data.endog 1141 if not dynamic: 1142 predict = super(ARIMA, self).predict(params, start, end, 1143 dynamic) 1144 1145 start = self._get_predict_start(start, dynamic) 1146 end, out_of_sample = self._get_predict_end(end) 1147 d = self.k_diff 1148 if 'mle' in self.method: 1149 start += d - 1 # for case where d == 2 1150 end += d - 1 1151 # add each predicted diff to lagged endog 1152 if out_of_sample: 1153 fv = predict[:-out_of_sample] + endog[start:end+1] 1154 if d == 2: #TODO: make a general solution to this 1155 fv += np.diff(endog[start - 1:end + 1]) 1156 levels = unintegrate_levels(endog[-d:], d) 1157 fv = np.r_[fv, 1158 unintegrate(predict[-out_of_sample:], 1159 levels)[d:]] 1160 else: 1161 fv = predict + endog[start:end + 1] 1162 if d == 2: 1163 fv += np.diff(endog[start - 1:end + 1]) 1164 else: 1165 k_ar = self.k_ar 1166 if out_of_sample: 1167 fv = (predict[:-out_of_sample] + 1168 endog[max(start, self.k_ar-1):end+k_ar+1]) 1169 if d == 2: 1170 fv += np.diff(endog[start - 1:end + 1]) 1171 levels = unintegrate_levels(endog[-d:], d) 1172 fv = np.r_[fv, 1173 unintegrate(predict[-out_of_sample:], 1174 levels)[d:]] 1175 else: 1176 fv = predict + endog[max(start, k_ar):end+k_ar+1] 1177 if d == 2: 1178 fv += np.diff(endog[start - 1:end + 1]) 1179 else: 1180 #IFF we need to use pre-sample values assume pre-sample 1181 # residuals are zero, do this by a hack 1182 if start == self.k_ar + self.k_diff or start is None: 1183 # do the first k_diff+1 separately 1184 p = self.k_ar 1185 q = self.k_ma 1186 k_exog = self.k_exog 1187 k_trend = self.k_trend 1188 k_diff = self.k_diff 1189 (trendparam, exparams, 1190 arparams, maparams) = _unpack_params(params, (p, q), 1191 k_trend, 1192 k_exog, 1193 reverse=True) 1194 # this is the hack 1195 self.k_ma = 0 1196 1197 predict = super(ARIMA, self).predict(params, start, end, 1198 exog, dynamic) 1199 if not start: 1200 start = self._get_predict_start(start, dynamic) 1201 start += k_diff 1202 self.k_ma = q 1203 return endog[start-1] + np.cumsum(predict) 1204 else: 1205 predict = super(ARIMA, self).predict(params, start, end, 1206 exog, dynamic) 1207 return endog[start-1] + np.cumsum(predict) 1208 return fv 1209 1210 else: # pragma : no cover 1211 raise ValueError("typ %s not understood" % typ) 1212 1213 predict.__doc__ = _arima_predict 1214 1215 1216 class ARMAResults(tsbase.TimeSeriesModelResults): 1217 """ 1218 Class to hold results from fitting an ARMA model. 1219 1220 Parameters 1221 ---------- 1222 model : ARMA instance 1223 The fitted model instance 1224 params : array 1225 Fitted parameters 1226 normalized_cov_params : array, optional 1227 The normalized variance covariance matrix 1228 scale : float, optional 1229 Optional argument to scale the variance covariance matrix. 1230 1231 Returns 1232 -------- 1233 **Attributes** 1234 1235 aic : float 1236 Akaike Information Criterion 1237 :math:`-2*llf+2* df_model` 1238 where `df_model` includes all AR parameters, MA parameters, constant 1239 terms parameters on constant terms and the variance. 1240 arparams : array 1241 The parameters associated with the AR coefficients in the model. 1242 arroots : array 1243 The roots of the AR coefficients are the solution to 1244 (1 - arparams[0]*z - arparams[1]*z**2 -...- arparams[p-1]*z**k_ar) = 0 1245 Stability requires that the roots in modulus lie outside the unit 1246 circle. 1247 bic : float 1248 Bayes Information Criterion 1249 -2*llf + log(nobs)*df_model 1250 Where if the model is fit using conditional sum of squares, the 1251 number of observations `nobs` does not include the `p` pre-sample 1252 observations. 1253 bse : array 1254 The standard errors of the parameters. These are computed using the 1255 numerical Hessian. 1256 df_model : array 1257 The model degrees of freedom = `k_exog` + `k_trend` + `k_ar` + `k_ma` 1258 df_resid : array 1259 The residual degrees of freedom = `nobs` - `df_model` 1260 fittedvalues : array 1261 The predicted values of the model. 1262 hqic : float 1263 Hannan-Quinn Information Criterion 1264 -2*llf + 2*(`df_model`)*log(log(nobs)) 1265 Like `bic` if the model is fit using conditional sum of squares then 1266 the `k_ar` pre-sample observations are not counted in `nobs`. 1267 k_ar : int 1268 The number of AR coefficients in the model. 1269 k_exog : int 1270 The number of exogenous variables included in the model. Does not 1271 include the constant. 1272 k_ma : int 1273 The number of MA coefficients. 1274 k_trend : int 1275 This is 0 for no constant or 1 if a constant is included. 1276 llf : float 1277 The value of the log-likelihood function evaluated at `params`. 1278 maparams : array 1279 The value of the moving average coefficients. 1280 maroots : array 1281 The roots of the MA coefficients are the solution to 1282 (1 + maparams[0]*z + maparams[1]*z**2 + ... + maparams[q-1]*z**q) = 0 1283 Stability requires that the roots in modules lie outside the unit 1284 circle. 1285 model : ARMA instance 1286 A reference to the model that was fit. 1287 nobs : float 1288 The number of observations used to fit the model. If the model is fit 1289 using exact maximum likelihood this is equal to the total number of 1290 observations, `n_totobs`. If the model is fit using conditional 1291 maximum likelihood this is equal to `n_totobs` - `k_ar`. 1292 n_totobs : float 1293 The total number of observations for `endog`. This includes all 1294 observations, even pre-sample values if the model is fit using `css`. 1295 params : array 1296 The parameters of the model. The order of variables is the trend 1297 coefficients and the `k_exog` exognous coefficients, then the 1298 `k_ar` AR coefficients, and finally the `k_ma` MA coefficients. 1299 pvalues : array 1300 The p-values associated with the t-values of the coefficients. Note 1301 that the coefficients are assumed to have a Student's T distribution. 1302 resid : array 1303 The model residuals. If the model is fit using 'mle' then the 1304 residuals are created via the Kalman Filter. If the model is fit 1305 using 'css' then the residuals are obtained via `scipy.signal.lfilter` 1306 adjusted such that the first `k_ma` residuals are zero. These zero 1307 residuals are not returned. 1308 scale : float 1309 This is currently set to 1.0 and not used by the model or its results. 1310 sigma2 : float 1311 The variance of the residuals. If the model is fit by 'css', 1312 sigma2 = ssr/nobs, where ssr is the sum of squared residuals. If 1313 the model is fit by 'mle', then sigma2 = 1/nobs * sum(v**2 / F) 1314 where v is the one-step forecast error and F is the forecast error 1315 variance. See `nobs` for the difference in definitions depending on the 1316 fit. 1317 """ 1318 _cache = {} 1319 1320 #TODO: use this for docstring when we fix nobs issue 1321 1322 def __init__(self, model, params, normalized_cov_params=None, scale=1.): 1323 super(ARMAResults, self).__init__(model, params, normalized_cov_params, 1324 scale) 1325 self.sigma2 = model.sigma2 1326 nobs = model.nobs 1327 self.nobs = nobs 1328 k_exog = model.k_exog 1329 self.k_exog = k_exog 1330 k_trend = model.k_trend 1331 self.k_trend = k_trend 1332 k_ar = model.k_ar 1333 self.k_ar = k_ar 1334 self.n_totobs = len(model.endog) 1335 k_ma = model.k_ma 1336 self.k_ma = k_ma 1337 df_model = k_exog + k_trend + k_ar + k_ma 1338 self._ic_df_model = df_model + 1 1339 self.df_model = df_model 1340 self.df_resid = self.nobs - df_model 1341 self._cache = resettable_cache() 1342 self.constant = 0 #Added by me 1343 1344 @cache_readonly 1345 def arroots(self): 1346 return np.roots(np.r_[1, -self.arparams])**-1 1347 1348 @cache_readonly 1349 def maroots(self): 1350 return np.roots(np.r_[1, self.maparams])**-1 1351 1352 @cache_readonly 1353 def arfreq(self): 1354 r""" 1355 Returns the frequency of the AR roots. 1356 1357 This is the solution, x, to z = abs(z)*exp(2j*np.pi*x) where z are the 1358 roots. 1359 """ 1360 z = self.arroots 1361 if not z.size: 1362 return 1363 return np.arctan2(z.imag, z.real) / (2*pi) 1364 1365 @cache_readonly 1366 def mafreq(self): 1367 r""" 1368 Returns the frequency of the MA roots. 1369 1370 This is the solution, x, to z = abs(z)*exp(2j*np.pi*x) where z are the 1371 roots. 1372 """ 1373 z = self.maroots 1374 if not z.size: 1375 return 1376 return np.arctan2(z.imag, z.real) / (2*pi) 1377 1378 @cache_readonly 1379 def arparams(self): 1380 k = self.k_exog + self.k_trend 1381 return self.params[k:k+self.k_ar] 1382 1383 @cache_readonly 1384 def maparams(self): 1385 k = self.k_exog + self.k_trend 1386 k_ar = self.k_ar 1387 return self.params[k+k_ar:] 1388 1389 @cache_readonly 1390 def llf(self): 1391 return self.model.loglike(self.params) 1392 1393 @cache_readonly 1394 def bse(self): 1395 params = self.params 1396 hess = self.model.hessian(params) 1397 if len(params) == 1: # can't take an inverse, ensure 1d 1398 return np.sqrt(-1./hess[0]) 1399 return np.sqrt(np.diag(-inv(hess))) 1400 1401 def cov_params(self): # add scale argument? 1402 params = self.params 1403 hess = self.model.hessian(params) 1404 return -inv(hess) 1405 1406 @cache_readonly 1407 def aic(self): 1408 return -2 * self.llf + 2 * self._ic_df_model 1409 1410 @cache_readonly 1411 def bic(self): 1412 nobs = self.nobs 1413 return -2 * self.llf + np.log(nobs) * self._ic_df_model 1414 1415 @cache_readonly 1416 def hqic(self): 1417 nobs = self.nobs 1418 return -2 * self.llf + 2 * np.log(np.log(nobs)) * self._ic_df_model 1419 1420 @cache_readonly 1421 def fittedvalues(self): 1422 model = self.model 1423 endog = model.endog.copy() 1424 k_ar = self.k_ar 1425 exog = model.exog # this is a copy 1426 if exog is not None: 1427 if model.method == "css" and k_ar > 0: 1428 exog = exog[k_ar:] 1429 if model.method == "css" and k_ar > 0: 1430 endog = endog[k_ar:] 1431 fv = endog - self.resid 1432 # add deterministic part back in 1433 #k = self.k_exog + self.k_trend 1434 #TODO: this needs to be commented out for MLE with constant 1435 #if k != 0: 1436 # fv += dot(exog, self.params[:k]) 1437 return fv 1438 1439 @cache_readonly 1440 def resid(self): 1441 return self.model.geterrors(self.params) 1442 1443 @cache_readonly 1444 def pvalues(self): 1445 #TODO: same for conditional and unconditional? 1446 df_resid = self.df_resid 1447 return t.sf(np.abs(self.tvalues), df_resid) * 2 1448 1449 def predict(self, start=None, end=None, exog=None, dynamic=False): 1450 return self.model.predict(self.params, start, end, exog, dynamic) 1451 predict.__doc__ = _arma_results_predict 1452 1453 def _forecast_error(self, steps): 1454 sigma2 = self.sigma2 1455 ma_rep = arma2ma(np.r_[1, -self.arparams], 1456 np.r_[1, self.maparams], nobs=steps) 1457 1458 fcasterr = np.sqrt(sigma2 * np.cumsum(ma_rep**2)) 1459 return fcasterr 1460 1461 def _forecast_conf_int(self, forecast, fcasterr, alpha): 1462 const = norm.ppf(1 - alpha / 2.) 1463 conf_int = np.c_[forecast - const * fcasterr, 1464 forecast + const * fcasterr] 1465 1466 return conf_int 1467 1468 def forecast(self, steps=1, exog=None, alpha=.05): 1469 """ 1470 Out-of-sample forecasts 1471 1472 Parameters 1473 ---------- 1474 steps : int 1475 The number of out of sample forecasts from the end of the 1476 sample. 1477 exog : array 1478 If the model is an ARMAX, you must provide out of sample 1479 values for the exogenous variables. This should not include 1480 the constant. 1481 alpha : float 1482 The confidence intervals for the forecasts are (1 - alpha) % 1483 1484 Returns 1485 ------- 1486 forecast : array 1487 Array of out of sample forecasts 1488 stderr : array 1489 Array of the standard error of the forecasts. 1490 conf_int : array 1491 2d array of the confidence interval for the forecast 1492 """ 1493 if exog is not None: 1494 #TODO: make a convenience function for this. we're using the 1495 # pattern elsewhere in the codebase 1496 exog = np.asarray(exog) 1497 if self.k_exog == 1 and exog.ndim == 1: 1498 exog = exog[:, None] 1499 elif exog.ndim == 1: 1500 if len(exog) != self.k_exog: 1501 raise ValueError("1d exog given and len(exog) != k_exog") 1502 exog = exog[None, :] 1503 if exog.shape[0] != steps: 1504 raise ValueError("new exog needed for each step") 1505 # prepend in-sample exog observations 1506 exog = np.vstack((self.model.exog[-self.k_ar:, self.k_trend:], 1507 exog)) 1508 1509 forecast, ct = _arma_predict_out_of_sample(self.params, 1510 steps, self.resid, self.k_ar, 1511 self.k_ma, self.k_trend, 1512 self.k_exog, self.model.endog, 1513 exog, method=self.model.method) 1514 self.constant = ct 1515 1516 # compute the standard errors 1517 fcasterr = self._forecast_error(steps) 1518 conf_int = self._forecast_conf_int(forecast, fcasterr, alpha) 1519 1520 return forecast, fcasterr, conf_int 1521 1522 def summary(self, alpha=.05): 1523 """Summarize the Model 1524 1525 Parameters 1526 ---------- 1527 alpha : float, optional 1528 Significance level for the confidence intervals. 1529 1530 Returns 1531 ------- 1532 smry : Summary instance 1533 This holds the summary table and text, which can be printed or 1534 converted to various output formats. 1535 1536 See Also 1537 -------- 1538 statsmodels.iolib.summary.Summary 1539 """ 1540 from statsmodels.iolib.summary import Summary 1541 model = self.model 1542 title = model.__class__.__name__ + ' Model Results' 1543 method = model.method 1544 # get sample TODO: make better sample machinery for estimation 1545 k_diff = getattr(self, 'k_diff', 0) 1546 if 'mle' in method: 1547 start = k_diff 1548 else: 1549 start = k_diff + self.k_ar 1550 if self.data.dates is not None: 1551 dates = self.data.dates 1552 sample = [dates[start].strftime('%m-%d-%Y')] 1553 sample += ['- ' + dates[-1].strftime('%m-%d-%Y')] 1554 else: 1555 sample = str(start) + ' - ' + str(len(self.data.orig_endog)) 1556 1557 k_ar, k_ma = self.k_ar, self.k_ma 1558 if not k_diff: 1559 order = str((k_ar, k_ma)) 1560 else: 1561 order = str((k_ar, k_diff, k_ma)) 1562 top_left = [('Dep. Variable:', None), 1563 ('Model:', [model.__class__.__name__ + order]), 1564 ('Method:', [method]), 1565 ('Date:', None), 1566 ('Time:', None), 1567 ('Sample:', [sample[0]]), 1568 ('', [sample[1]]) 1569 ] 1570 1571 top_right = [ 1572 ('No. Observations:', [str(len(self.model.endog))]), 1573 ('Log Likelihood', ["%#5.3f" % self.llf]), 1574 ('S.D. of innovations', ["%#5.3f" % self.sigma2**.5]), 1575 ('AIC', ["%#5.3f" % self.aic]), 1576 ('BIC', ["%#5.3f" % self.bic]), 1577 ('HQIC', ["%#5.3f" % self.hqic])] 1578 1579 smry = Summary() 1580 smry.add_table_2cols(self, gleft=top_left, gright=top_right, 1581 title=title) 1582 smry.add_table_params(self, alpha=alpha, use_t=False) 1583 1584 # Make the roots table 1585 from statsmodels.iolib.table import SimpleTable 1586 1587 if k_ma and k_ar: 1588 arstubs = ["AR.%d" % i for i in range(1, k_ar + 1)] 1589 mastubs = ["MA.%d" % i for i in range(1, k_ma + 1)] 1590 stubs = arstubs + mastubs 1591 roots = np.r_[self.arroots, self.maroots] 1592 freq = np.r_[self.arfreq, self.mafreq] 1593 elif k_ma: 1594 mastubs = ["MA.%d" % i for i in range(1, k_ma + 1)] 1595 stubs = mastubs 1596 roots = self.maroots 1597 freq = self.mafreq 1598 elif k_ar: 1599 arstubs = ["AR.%d" % i for i in range(1, k_ar + 1)] 1600 stubs = arstubs 1601 roots = self.arroots 1602 freq = self.arfreq 1603 else: # 0,0 model 1604 stubs = [] 1605 if len(stubs): # not 0, 0 1606 modulus = np.abs(roots) 1607 data = np.column_stack((roots.real, roots.imag, modulus, freq)) 1608 roots_table = SimpleTable(data, 1609 headers=[' Real', 1610 ' Imaginary', 1611 ' Modulus', 1612 ' Frequency'], 1613 title="Roots", 1614 stubs=stubs, 1615 data_fmts=["%17.4f", "%+17.4fj", 1616 "%17.4f", "%17.4f"]) 1617 1618 smry.tables.append(roots_table) 1619 return smry 1620 1621 def summary2(self, title=None, alpha=.05, float_format="%.4f"): 1622 """Experimental summary function for ARIMA Results 1623 1624 Parameters 1625 ----------- 1626 title : string, optional 1627 Title for the top table. If not None, then this replaces the 1628 default title 1629 alpha : float 1630 significance level for the confidence intervals 1631 float_format: string 1632 print format for floats in parameters summary 1633 1634 Returns 1635 ------- 1636 smry : Summary instance 1637 This holds the summary table and text, which can be printed or 1638 converted to various output formats. 1639 1640 See Also 1641 -------- 1642 statsmodels.iolib.summary2.Summary : class to hold summary 1643 results 1644 1645 """ 1646 from pandas import DataFrame 1647 # get sample TODO: make better sample machinery for estimation 1648 k_diff = getattr(self, 'k_diff', 0) 1649 if 'mle' in self.model.method: 1650 start = k_diff 1651 else: 1652 start = k_diff + self.k_ar 1653 if self.data.dates is not None: 1654 dates = self.data.dates 1655 sample = [dates[start].strftime('%m-%d-%Y')] 1656 sample += [dates[-1].strftime('%m-%d-%Y')] 1657 else: 1658 sample = str(start) + ' - ' + str(len(self.data.orig_endog)) 1659 1660 k_ar, k_ma = self.k_ar, self.k_ma 1661 1662 # Roots table 1663 if k_ma and k_ar: 1664 arstubs = ["AR.%d" % i for i in range(1, k_ar + 1)] 1665 mastubs = ["MA.%d" % i for i in range(1, k_ma + 1)] 1666 stubs = arstubs + mastubs 1667 roots = np.r_[self.arroots, self.maroots] 1668 freq = np.r_[self.arfreq, self.mafreq] 1669 elif k_ma: 1670 mastubs = ["MA.%d" % i for i in range(1, k_ma + 1)] 1671 stubs = mastubs 1672 roots = self.maroots 1673 freq = self.mafreq 1674 elif k_ar: 1675 arstubs = ["AR.%d" % i for i in range(1, k_ar + 1)] 1676 stubs = arstubs 1677 roots = self.arroots 1678 freq = self.arfreq 1679 else: # 0, 0 order 1680 stubs = [] 1681 1682 if len(stubs): 1683 modulus = np.abs(roots) 1684 data = np.column_stack((roots.real, roots.imag, modulus, freq)) 1685 data = DataFrame(data) 1686 data.columns = ['Real', 'Imaginary', 'Modulus', 'Frequency'] 1687 data.index = stubs 1688 1689 # Summary 1690 from statsmodels.iolib import summary2 1691 smry = summary2.Summary() 1692 1693 # Model info 1694 model_info = summary2.summary_model(self) 1695 model_info['Method:'] = self.model.method 1696 model_info['Sample:'] = sample[0] 1697 model_info[' '] = sample[-1] 1698 model_info['S.D. of innovations:'] = "%#5.3f" % self.sigma2**.5 1699 model_info['HQIC:'] = "%#5.3f" % self.hqic 1700 model_info['No. Observations:'] = str(len(self.model.endog)) 1701 1702 # Parameters 1703 params = summary2.summary_params(self) 1704 smry.add_dict(model_info) 1705 smry.add_df(params, float_format=float_format) 1706 if len(stubs): 1707 smry.add_df(data, float_format="%17.4f") 1708 smry.add_title(results=self, title=title) 1709 1710 return smry 1711 1712 def plot_predict(self, start=None, end=None, exog=None, dynamic=False, 1713 alpha=.05, plot_insample=True, ax=None): 1714 from statsmodels.graphics.utils import _import_mpl, create_mpl_ax 1715 _ = _import_mpl() 1716 fig, ax = create_mpl_ax(ax) 1717 1718 1719 # use predict so you set dates 1720 forecast = self.predict(start, end, exog, dynamic) 1721 # doing this twice. just add a plot keyword to predict? 1722 start = self.model._get_predict_start(start, dynamic=False) 1723 end, out_of_sample = self.model._get_predict_end(end, dynamic=False) 1724 1725 if out_of_sample: 1726 steps = out_of_sample 1727 fc_error = self._forecast_error(steps) 1728 conf_int = self._forecast_conf_int(forecast[-steps:], fc_error, 1729 alpha) 1730 1731 1732 if hasattr(self.data, "predict_dates"): 1733 from pandas import TimeSeries 1734 forecast = TimeSeries(forecast, index=self.data.predict_dates) 1735 ax = forecast.plot(ax=ax, label='forecast') 1736 else: 1737 ax.plot(forecast) 1738 1739 x = ax.get_lines()[-1].get_xdata() 1740 if out_of_sample: 1741 label = "{0:.0%} confidence interval".format(1 - alpha) 1742 ax.fill_between(x[-out_of_sample:], conf_int[:, 0], conf_int[:, 1], 1743 color='gray', alpha=.5, label=label) 1744 1745 if plot_insample: 1746 ax.plot(x[:end + 1 - start], self.model.endog[start:end+1], 1747 label=self.model.endog_names) 1748 1749 ax.legend(loc='best') 1750 1751 return fig 1752 plot_predict.__doc__ = _plot_predict 1753 1754 1755 class ARMAResultsWrapper(wrap.ResultsWrapper): 1756 _attrs = {} 1757 _wrap_attrs = wrap.union_dicts(tsbase.TimeSeriesResultsWrapper._wrap_attrs, 1758 _attrs) 1759 _methods = {} 1760 _wrap_methods = wrap.union_dicts(tsbase.TimeSeriesResultsWrapper._wrap_methods, 1761 _methods) 1762 wrap.populate_wrapper(ARMAResultsWrapper, ARMAResults) 1763 1764 1765 class ARIMAResults(ARMAResults): 1766 def predict(self, start=None, end=None, exog=None, typ='linear', 1767 dynamic=False): 1768 return self.model.predict(self.params, start, end, exog, typ, dynamic) 1769 predict.__doc__ = _arima_results_predict 1770 1771 def _forecast_error(self, steps): 1772 sigma2 = self.sigma2 1773 ma_rep = arma2ma(np.r_[1, -self.arparams], 1774 np.r_[1, self.maparams], nobs=steps) 1775 1776 fcerr = np.sqrt(np.cumsum(cumsum_n(ma_rep, self.k_diff)**2)*sigma2) 1777 return fcerr 1778 1779 def _forecast_conf_int(self, forecast, fcerr, alpha): 1780 const = norm.ppf(1 - alpha/2.) 1781 conf_int = np.c_[forecast - const*fcerr, forecast + const*fcerr] 1782 return conf_int 1783 1784 def forecast(self, steps=1, exog=None, alpha=.05): 1785 """ 1786 Out-of-sample forecasts 1787 1788 Parameters 1789 ---------- 1790 steps : int 1791 The number of out of sample forecasts from the end of the 1792 sample. 1793 exog : array 1794 If the model is an ARIMAX, you must provide out of sample 1795 values for the exogenous variables. This should not include 1796 the constant. 1797 alpha : float 1798 The confidence intervals for the forecasts are (1 - alpha) % 1799 1800 Returns 1801 ------- 1802 forecast : array 1803 Array of out of sample forecasts 1804 stderr : array 1805 Array of the standard error of the forecasts. 1806 conf_int : array 1807 2d array of the confidence interval for the forecast 1808 1809 Notes 1810 ----- 1811 Prediction is done in the levels of the original endogenous variable. 1812 If you would like prediction of differences in levels use `predict`. 1813 """ 1814 if exog is not None: 1815 if self.k_exog == 1 and exog.ndim == 1: 1816 exog = exog[:, None] 1817 if exog.shape[0] != steps: 1818 raise ValueError("new exog needed for each step") 1819 # prepend in-sample exog observations 1820 exog = np.vstack((self.model.exog[-self.k_ar:, self.k_trend:], 1821 exog)) 1822 forecast, ct = _arma_predict_out_of_sample(self.params, steps, self.resid, 1823 self.k_ar, self.k_ma, 1824 self.k_trend, self.k_exog, 1825 self.model.endog, 1826 exog, method=self.model.method) 1827 1828 #self.constant = ct 1829 d = self.k_diff 1830 endog = self.model.data.endog[-d:] 1831 forecast = unintegrate(forecast, unintegrate_levels(endog, d))[d:] 1832 1833 # get forecast errors 1834 fcerr = self._forecast_error(steps) 1835 conf_int = self._forecast_conf_int(forecast, fcerr, alpha) 1836 return forecast, fcerr, conf_int 1837 1838 def plot_predict(self, start=None, end=None, exog=None, dynamic=False, 1839 alpha=.05, plot_insample=True, ax=None): 1840 from statsmodels.graphics.utils import _import_mpl, create_mpl_ax 1841 _ = _import_mpl() 1842 fig, ax = create_mpl_ax(ax) 1843 1844 # use predict so you set dates 1845 forecast = self.predict(start, end, exog, 'levels', dynamic) 1846 # doing this twice. just add a plot keyword to predict? 1847 start = self.model._get_predict_start(start, dynamic=dynamic) 1848 end, out_of_sample = self.model._get_predict_end(end, dynamic=dynamic) 1849 1850 if out_of_sample: 1851 steps = out_of_sample 1852 fc_error = self._forecast_error(steps) 1853 conf_int = self._forecast_conf_int(forecast[-steps:], fc_error, 1854 alpha) 1855 1856 if hasattr(self.data, "predict_dates"): 1857 from pandas import TimeSeries 1858 forecast = TimeSeries(forecast, index=self.data.predict_dates) 1859 ax = forecast.plot(ax=ax, label='forecast') 1860 else: 1861 ax.plot(forecast) 1862 1863 x = ax.get_lines()[-1].get_xdata() 1864 if out_of_sample: 1865 label = "{0:.0%} confidence interval".format(1 - alpha) 1866 ax.fill_between(x[-out_of_sample:], conf_int[:, 0], conf_int[:, 1], 1867 color='gray', alpha=.5, label=label) 1868 1869 if plot_insample: 1870 import re 1871 k_diff = self.k_diff 1872 label = re.sub("D\d*\.", "", self.model.endog_names) 1873 levels = unintegrate(self.model.endog, 1874 self.model._first_unintegrate) 1875 ax.plot(x[:end + 1 - start], 1876 levels[start + k_diff:end + k_diff + 1], label=label) 1877 1878 ax.legend(loc='best') 1879 1880 return fig 1881 1882 plot_predict.__doc__ = _arima_plot_predict 1883 1884 1885 class ARIMAResultsWrapper(ARMAResultsWrapper): 1886 pass 1887 wrap.populate_wrapper(ARIMAResultsWrapper, ARIMAResults) 1888 1889 1890 if __name__ == "__main__": 1891 import statsmodels.api as sm 1892 1893 # simulate arma process 1894 from statsmodels.tsa.arima_process import arma_generate_sample 1895 y = arma_generate_sample([1., -.75], [1., .25], nsample=1000) 1896 arma = ARMA(y) 1897 res = arma.fit(trend='nc', order=(1, 1)) 1898 1899 np.random.seed(12345) 1900 y_arma22 = arma_generate_sample([1., -.85, .35], [1, .25, -.9], 1901 nsample=1000) 1902 arma22 = ARMA(y_arma22) 1903 res22 = arma22.fit(trend='nc', order=(2, 2)) 1904 1905 # test CSS 1906 arma22_css = ARMA(y_arma22) 1907 res22css = arma22_css.fit(trend='nc', order=(2, 2), method='css') 1908 1909 data = sm.datasets.sunspots.load() 1910 ar = ARMA(data.endog) 1911 resar = ar.fit(trend='nc', order=(9, 0)) 1912 1913 y_arma31 = arma_generate_sample([1, -.75, -.35, .25], [.1], 1914 nsample=1000) 1915 1916 arma31css = ARMA(y_arma31) 1917 res31css = arma31css.fit(order=(3, 1), method="css", trend="nc", 1918 transparams=True) 1919 1920 y_arma13 = arma_generate_sample([1., -.75], [1, .25, -.5, .8], 1921 nsample=1000) 1922 arma13css = ARMA(y_arma13) 1923 res13css = arma13css.fit(order=(1, 3), method='css', trend='nc') 1924 1925 # check css for p < q and q < p 1926 y_arma41 = arma_generate_sample([1., -.75, .35, .25, -.3], [1, -.35], 1927 nsample=1000) 1928 arma41css = ARMA(y_arma41) 1929 res41css = arma41css.fit(order=(4, 1), trend='nc', method='css') 1930 1931 y_arma14 = arma_generate_sample([1, -.25], [1., -.75, .35, .25, -.3], 1932 nsample=1000) 1933 arma14css = ARMA(y_arma14) 1934 res14css = arma14css.fit(order=(4, 1), trend='nc', method='css') 1935 1936 # ARIMA Model 1937 from statsmodels.datasets import webuse 1938 dta = webuse('wpi1') 1939 wpi = dta['wpi'] 1940 1941 mod = ARIMA(wpi, (1, 1, 1)).fit()