P3940 分组

时间:2022-01-02 10:46:23

P3940 分组

https://www.luogu.org/problemnew/show/P3940

官方题解http://pan.baidu.com/s/1eSAMuXk

分析:

  并查集。

  首先根据K=1和K=2分成两个问题来做。

  K=1:问题为分成最小数量的区间,使得每个区间满足:任意两个数的和都不是完全平方数(1,3位于一个集合是不可以的),输出字典序最小的方案。

  一个性质:一个集合越长越好(ppt里有证明)。那么从后往前扫,每到一个判断是否可以加进去,不可以的时候,记录答案。如果直接判断是$n^2$,可以枚举$x^2$来判断,复杂度$O(n\sqrt n)$。

  K=2:问题为分成最小数量的区间,使得每个区间满足:区间可以任意划分为至多两个集合,这两个集合内部任意两个数的和都不是完全平方数。(1,3,5是可以在分成一段的,因为可以划分为{1,3},{5})

  上面的性质还是适用的,所以同样是从后往前扫,每扫到一个判断是否可以加入。这个地方可以记录一个并查集,维护“敌人”集合。$x+n$表示x的“敌人”(不可以一起存在的)。那么如果两个数a+b属于同一个集合,说明a和b用一个共同的敌人,那么a和b就必须在同一个集合里。加入一个x,判断是否可以$k^2-x$共存在这个区间里。注意到一个问题:如果一个数出现了多次,如果它是$2x=k^2$的形式,需要特判(见代码),其他的都可以放进一个集合里。

代码:

 #include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<iostream>
#include<cctype>
#include<set>
#include<vector>
#include<queue>
#include<map>
#define fi(s) freopen(s,"r",stdin);
#define fo(s) freopen(s,"w",stdout);
using namespace std;
typedef long long LL; inline int read() {
int x=,f=;char ch=getchar();for(;!isdigit(ch);ch=getchar())if(ch=='-')f=-;
for(;isdigit(ch);ch=getchar())x=x*+ch-'';return x*f;
} const int N = ; int a[N], fa[N << ];
int n, Mx;
bool vis[N], Ban[N], issqr[N << ];
vector<int> ans; void solve1() {
for (int j = n, i = n; i>=; ) {
for (bool flag = ; j >= ; -- j) {
for (int k=, tmp; ; ++ k) {
tmp = k * k - a[j];
if (tmp <= ) continue; if (tmp > Mx) break;
if (vis[tmp]) { flag = ; break; }
}
if (!flag) break;
vis[a[j]] = true;
}
if (!j) break;
ans.push_back(j);
for (; i > j; -- i) vis[a[i]] = false;
}
} int find(int x) {
return x == fa[x] ? x : fa[x] = find(fa[x]);
} bool check(int u,int v) {
int u1 = find(u), u2 = find(u + Mx);
int v1 = find(v), v2 = find(v + Mx);
if (u1 == v1) return ;
fa[u1] = v2; fa[v1] = u2;
return ;
} void solve2() {
for (int i = ; i <= (Mx << ); ++i) fa[i] = i;
for (int i = ; i * i <= (Mx << ); ++i) issqr[i * i] = ;
for (int i = n, j = n; i; ) {
for (bool flag = ; j; --j) {
if (!vis[a[j]]) { // 未出现过
for (int k = , tmp; ; ++k) {
tmp = k * k - a[j];
if (tmp <= ) continue; if (tmp > Mx) break;
if (vis[tmp] && (Ban[a[j]] || Ban[k * k - a[j]] || check(k * k - a[j], a[j]))) {
flag = ; fa[a[j]] = a[j], fa[a[j] + Mx] = a[j] + Mx; break;
}
}
if (!flag) break;
vis[a[j]] = true;
}
// 出现过:只有2*a=x^2(2,8...)的情况要特判,其他的都可以分到一集合里。
// 这些数最多出现两个,而且没有第三个敌人
else if (issqr[a[j] + a[j]]) {
if (Ban[a[j]]) break;
for (int k = , tmp; ; ++k) { // 判断是否有第三个敌人
tmp = k * k - a[j];
if (tmp < ) continue; if (tmp > Mx) break;
if (vis[tmp] && k * k != a[j] * ) { flag = ; break; }
}
if (!flag) break;
Ban[a[j]] = true; // a[j]以前一个,现在一个 a[j]以后不能再有了。
}
}
if (!j) break;
ans.push_back(j);
for (; i > j; --i) fa[a[i]] = a[i], fa[a[i] + Mx] = a[i] + Mx, vis[a[i]] = Ban[a[i]] = ;
}
} int main() {
n = read();int K = read();
for (int i=; i<=n; ++i) a[i] = read(), Mx = max(Mx, a[i]);
if (K == ) solve1();
else solve2();
printf("%d\n",ans.size() + );
for (int i=ans.size()-; i>=; --i) printf("%d ",ans[i]); putchar('\n');
return ;
}