用spark导入数据到hbase

时间:2022-01-14 14:33:00

集群环境:一主三从,Spark为Spark On YARN模式

Spark导入hbase数据方式有多种

1.少量数据:直接调用hbase API的单条或者批量方法就可以

2.导入的数据量比较大,那就需要先生成hfile文件,在把hfile文件加载到hbase里面

下面主要介绍第二种方法:

该方法主要使用spark Java API的两个方法:

1.textFile:将本地文件或者HDFS文件转换成RDD

2.flatMapToPair:将每行数据的所有key-value对象合并成Iterator对象返回(针对多family,多column)

代码如下:

package scala;

import java.util.ArrayList;
import java.util.Iterator;
import java.util.List; import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.KeyValue;
import org.apache.hadoop.hbase.TableName;
import org.apache.hadoop.hbase.client.Admin;
import org.apache.hadoop.hbase.client.Connection;
import org.apache.hadoop.hbase.client.ConnectionFactory;
import org.apache.hadoop.hbase.client.Table;
import org.apache.hadoop.hbase.io.ImmutableBytesWritable;
import org.apache.hadoop.hbase.mapreduce.HFileOutputFormat2;
import org.apache.hadoop.hbase.mapreduce.LoadIncrementalHFiles;
import org.apache.hadoop.hbase.util.Bytes;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.PairFlatMapFunction;
import org.apache.spark.storage.StorageLevel; import util.HFileLoader; public class HbaseBulkLoad { private static final String ZKconnect="slave1,slave2,slave3:2181";
private static final String HDFS_ADDR="hdfs://master:8020";
private static final String TABLE_NAME="DBSTK.STKFSTEST";//表名
private static final String COLUMN_FAMILY="FS";//列族 public static void run(String[] args) throws Exception {
Configuration configuration = HBaseConfiguration.create();
configuration.set("hbase.zookeeper.quorum", ZKconnect);
configuration.set("fs.defaultFS", HDFS_ADDR);
configuration.set("dfs.replication", "1"); String inputPath = args[0];
String outputPath = args[1];
Job job = Job.getInstance(configuration, "Spark Bulk Loading HBase Table:" + TABLE_NAME);
job.setInputFormatClass(TextInputFormat.class);
job.setMapOutputKeyClass(ImmutableBytesWritable.class);//指定输出键类
job.setMapOutputValueClass(KeyValue.class);//指定输出值类
job.setOutputFormatClass(HFileOutputFormat2.class); FileInputFormat.addInputPaths(job, inputPath);//输入路径
FileSystem fs = FileSystem.get(configuration);
Path output = new Path(outputPath);
if (fs.exists(output)) {
fs.delete(output, true);//如果输出路径存在,就将其删除
}
fs.close();
FileOutputFormat.setOutputPath(job, output);//hfile输出路径 //初始化sparkContext
SparkConf sparkConf = new SparkConf().setAppName("HbaseBulkLoad").setMaster("local[*]");
JavaSparkContext jsc = new JavaSparkContext(sparkConf);
//读取数据文件
JavaRDD<String> lines = jsc.textFile(inputPath);
lines.persist(StorageLevel.MEMORY_AND_DISK_SER());
JavaPairRDD<ImmutableBytesWritable,KeyValue> hfileRdd =
lines.flatMapToPair(new PairFlatMapFunction<String, ImmutableBytesWritable, KeyValue>() {
private static final long serialVersionUID = 1L;
@Override
public Iterator<Tuple2<ImmutableBytesWritable, KeyValue>> call(String text) throws Exception {
List<Tuple2<ImmutableBytesWritable, KeyValue>> tps = new ArrayList<Tuple2<ImmutableBytesWritable, KeyValue>>();
if(null == text || text.length()<1){
return tps.iterator();//不能返回null
}
String[] resArr = text.split(",");
if(resArr != null && resArr.length == 14){
byte[] rowkeyByte = Bytes.toBytes(resArr[0]+resArr[3]+resArr[4]+resArr[5])
byte[] columnFamily = Bytes.toBytes(COLUMN_FAMILY);
ImmutableBytesWritable ibw = new ImmutableBytesWritable(rowkeyByte);
//EP,HP,LP,MK,MT,SC,SN,SP,ST,SY,TD,TM,TQ,UX(字典顺序排序)
//注意,这地方rowkey、列族和列都要按照字典排序,如果有多个列族,也要按照字典排序,rowkey排序我们交给spark的sortByKey去管理
tps.add(new Tuple2<>(ibw,new KeyValue(rowkeyByte, columnFamily, Bytes.toBytes("EP"),Bytes.toBytes(resArr[9]))));
tps.add(new Tuple2<>(ibw,new KeyValue(rowkeyByte, columnFamily, Bytes.toBytes("HP"),Bytes.toBytes(resArr[7]))));
tps.add(new Tuple2<>(ibw,new KeyValue(rowkeyByte, columnFamily, Bytes.toBytes("LP"),Bytes.toBytes(resArr[8]))));
tps.add(new Tuple2<>(ibw,new KeyValue(rowkeyByte, columnFamily, Bytes.toBytes("MK"),Bytes.toBytes(resArr[13]))));
tps.add(new Tuple2<>(ibw,new KeyValue(rowkeyByte, columnFamily, Bytes.toBytes("MT"),Bytes.toBytes(resArr[4]))));
tps.add(new Tuple2<>(ibw,new KeyValue(rowkeyByte, columnFamily, Bytes.toBytes("SC"),Bytes.toBytes(resArr[0]))));
tps.add(new Tuple2<>(ibw,new KeyValue(rowkeyByte, columnFamily, Bytes.toBytes("SN"),Bytes.toBytes(resArr[1]))));
tps.add(new Tuple2<>(ibw,new KeyValue(rowkeyByte, columnFamily, Bytes.toBytes("SP"),Bytes.toBytes(resArr[6]))));
tps.add(new Tuple2<>(ibw,new KeyValue(rowkeyByte, columnFamily, Bytes.toBytes("ST"),Bytes.toBytes(resArr[5]))));
tps.add(new Tuple2<>(ibw,new KeyValue(rowkeyByte, columnFamily, Bytes.toBytes("SY"),Bytes.toBytes(resArr[2]))));
tps.add(new Tuple2<>(ibw,new KeyValue(rowkeyByte, columnFamily, Bytes.toBytes("TD"),Bytes.toBytes(resArr[3]))));
tps.add(new Tuple2<>(ibw,new KeyValue(rowkeyByte, columnFamily, Bytes.toBytes("TM"),Bytes.toBytes(resArr[11]))));
tps.add(new Tuple2<>(ibw,new KeyValue(rowkeyByte, columnFamily, Bytes.toBytes("TQ"),Bytes.toBytes(resArr[10]))));
tps.add(new Tuple2<>(ibw,new KeyValue(rowkeyByte, columnFamily, Bytes.toBytes("UX"),Bytes.toBytes(resArr[12]))));
}
return tps.iterator();
}
}).sortByKey(); Connection connection = ConnectionFactory.createConnection(configuration);
TableName tableName = TableName.valueOf(TABLE_NAME);
HFileOutputFormat2.configureIncrementalLoad(job, connection.getTable(tableName), connection.getRegionLocator(tableName)); //生成hfile文件
hfileRdd.saveAsNewAPIHadoopFile(outputPath, ImmutableBytesWritable.class, KeyValue.class, HFileOutputFormat2.class, job.getConfiguration()); // bulk load start
Table table = connection.getTable(tableName);
Admin admin = connection.getAdmin();
LoadIncrementalHFiles load = new LoadIncrementalHFiles(configuration);
load.doBulkLoad(new Path(outputPath), admin,table,connection.getRegionLocator(tableName)); jsc.close();
} public static void main(String[] args) {
try {
long start = System.currentTimeMillis();
args = new String[]{"hdfs://master:8020/test/test.txt","hdfs://master:8020/test/hfile/test"};
run(args);
long end = System.currentTimeMillis();
System.out.println("数据导入成功,总计耗时:"+(end-start)/1000+"s");
} catch(Exception e) {
e.printStackTrace();
}
} }

代码打包,上传到集群执行如下命令:

./spark-submit --master yarn-client --executor-memory 4G --driver-memory 1G --num-executors 100 --executor-cores 4 --total-executor-cores 400 
--conf spark.default.parallelism=1000 --class scala.HbaseBulkLoad /home/hadoop/app/hadoop/data/spark-hbase-test.jar

本次只测试导入了50000条数据,在测试导入15G(1.5亿条左右)数据时,导入速度没有MapReduce快