43. Merge Sorted Array && LRU Cache

时间:2021-08-07 11:49:05

Merge Sorted Array

OJ: https://oj.leetcode.com/problems/merge-sorted-array/

Given two sorted integer arrays A and B, merge B into A as one sorted array.

Note: You may assume that A has enough space (size that is greater or equal to m + n) to hold additional elements from B. The number of elements initialized in A and B are m and n respectively.

思想:因为 A 很大, 所以从最大值开始插入, 即从 A 的 m+n 位置开始插入数据。避免了冗余的移动。

class Solution {
public:
void merge(int A[], int m, int B[], int n) {
int end = m+n-1;
int iA = m-1, iB = n-1;
while(iB >= 0) {
if(iA < 0 || A[iA] <= B[iB]) A[end--] = B[iB--];
else A[end--] = A[iA--];
}
}
};

LRU Cache

OJ: https://oj.leetcode.com/problems/lru-cache/

Design and implement a data structure for Least Recently Used (LRU) cache. It should support the following operations: get and set.

get(key) - Get the value (will always be positive) of the key if the key exists in the cache, otherwise return -1. set(key, value) - Set or insert the value if the key is not already present. When the cache reached its capacity, it should invalidate the least recently used item before inserting a new item.

思想:

1. 由于要 O(1) 时间确定某 key 是不是在 Cache 中,所以用 Hash_map (<key, node*>), 从而能够O(1)找到结点地址,返回对应的 value。

2. 由于要 O(1) 时间插入、删除某项, 所以各项之间的存储不能用单链表(删除时要O(n)查找前面的结点),不能用顺序表(插入、删除都 O(n)), 故存储使用双链表。

综上分析,查找、插入、删除都是 O(1)时间。(代码尚可优化)

typedef struct node {
node *pre, *next;
int key;
int value;
node() : pre(NULL), next(NULL), key(0), value(0) {}
node(int k, int v) : pre(NULL), next(NULL), key(k), value(v) {}
} DoubleLinkList; class LRUCache{
public:
LRUCache(int capacity) : _capacity(capacity), cnt(0), front(NULL), tail(NULL) {} int get(int key) {
unordered_map<int, node*>::iterator it = _map.find(key);
if(it == _map.end()) return -1; node* s = it->second;
if(s != front) {
if(s == tail) {
tail = s->pre;
s->pre = NULL;
tail->next = NULL;
front->pre = s;
s->next = front;
front = s;
}else {
s->pre->next = s->next;
s->next->pre = s->pre;
s->next = front;
front->pre = s;
front = s;
}
}
return it->second->value;
}
void set(int key, int value) {
unordered_map<int, node*>::iterator it = _map.find(key);
if(it == _map.end()) {
if(++cnt > _capacity) {
if(front == tail) {
_map.erase(tail->key);
front = tail = NULL; }else{
node *s = tail;
tail = tail->pre;
tail->next = NULL;
_map.erase(s->key);
free(s);
--cnt;
}
}
node *p = new node(key, value);
if(front == NULL) {
front = tail = p;
}else {
p->next = front;
front->pre = p;
front = p;
}
_map.insert(pair<int, node*>(key, p));
}else {
it->second->value = value;
node *s = it->second;
if(s == front) {
return;
}else if(s == tail) {
tail = s->pre;
s->pre = NULL;
tail->next = NULL;
s->next = front;
front->pre = s;
front = s;
}else {
s->pre->next = s->next;
s->next->pre = s->pre;
s->pre = NULL;
s->next = front;
front->pre = s;
front = s;
}
}
}
unordered_map<int, node*> _map;
DoubleLinkList *front, *tail;
int _capacity;
int cnt;
};