This is a question from The Algorithm Design Manual:
这是算法设计手册中的一个问题:
Suppose you are given three strings of characters:
X
,Y
, andZ
, where|X| = n
,|Y| = m
, and|Z| = n+m.
Z
is said to be a shuffle ofX
andY
if and only ifZ
can be formed by interleaving the characters fromX
andY
in a way that maintains the left-to right ordering of the characters from each string.假设你有三串字符:X, Y, Z,其中|X| = n, |Y| = m, |Z| = n+m。Z是一个洗牌的X和Y当且仅当Z可以由交叉X和Y的字符的方式维护留给订购每个字符串的字符。
Give an efficient dynamic programming algorithm that determines whether
Z
is a shuffle ofX
andY
.给一个有效的动态编程算法,确定Z是X和Y的洗牌。
Hint: the values of the dynamic programming matrix you construct should be Boolean, not numeric
提示:您构造的动态规划矩阵的值应该是布尔型的,而不是数值型的。
This is what I tried:
这就是我所尝试的:
Initially, I made a 1-D char array and pointers to the starting characters of X,Y,Z respectively. If Z-pointer with matches X-pointer store X in the char array else check the same with Y-pointer.If each entry in the char array is not different from its last entry, Z is not interleaved.
最初,我分别对X、Y、Z的起始字符进行了1-D字符数组和指针。如果在char数组中与X指针相匹配的z指针,则用y指针检查相同的值。如果char数组中的每个条目与最后一个条目没有区别,那么Z就不会交叉。
Can someone help me with this problem?
有人能帮我解决这个问题吗?
4 个解决方案
#1
2
Following approach should give you an idea.
下面的方法会给你一个想法。
Define the condition d(s1,s2,s3) = (s1 + s2 == s3) { s3 is a shuffle of s1 and s2 }
定义条件d(s1,s2,s3) = (s1 + s2 == s3) {s3是s1和s2}的洗牌。
We have to find d( X, Y, Z )
.
我们要找到d(X, Y, Z)
if lengths of s1 and s2 are 1 each and length of s3 = 2,
如果s1和s2的长度分别为1和s3 = 2,
d( s1,s2,s3 ) = { (s1[0] == s3[0] && s2[0] == s3[1]) || (s1[0] == s3[1] && s2[0] == s3[0])
Similarly d can be obtained for empty strings.
同样的d可以用于空字符串。
For strings of arbitrary length, following relation holds.
对于任意长度的字符串,以下关系成立。
d( s1,s2,s3 ) = { ( d( s1-s1[last],s2,s3 - s3[last]) && s1[last] == s3[last] )
|| ( d( s1,s2 - s2[last],s3 - s3[last]) && s2[last] == s3[last] )
}
You can compute the d()
entries starting from zero length strings and keep checking.
您可以计算从零长度字符串开始的d()项,并继续检查。
#2
2
First, let's start with some definitions. I write X[i]
for the i
th element of X
and X[i)
for the substring of X
starting at index i
.
首先,让我们从一些定义开始。我把X[I]写在X和X的第I个元素上,从索引I开始。
For example, if X = abcde
, then X[2] = c
and X[2) = cde
.
例如,如果X = abcde,那么X[2] = c和X[2] = cde。
Similar definitions hold for Y
and Z
.
对Y和Z也有类似的定义。
To solve the problem by dynamic programming, you should keep a 2D boolean array A
of size (n+1) x (m+1)
. In this array, A[i, j] = true
if and only if X[i)
and Y[j)
can be interleaved to form Z[i+j)
.
要用动态规划来解决这个问题,你应该保持一个二维布尔数组a的大小(n+1) x (m+1)。在这个数组中,A[i, j] = true,如果且仅当X[i]和Y[j]可以交错形成Z[i+j]。
For an arbitrary (i, j)
, somewhere in the middle of the 2D array, the recurrence relation is very simple:
对于任意(i, j),在二维数组中间的某个地方,递归关系非常简单:
A[i, j] := X[i] = Z[i+j] and A[i+1, j]
or Y[j] = Z[i+j] and A[i, j+1]
On the edges of the 2D array you have the case that either X
or Y
is already at its end, which means the suffix of the other should be equal to the suffix of Z
:
在二维数组的边,你有一个例子,X或Y已经在它的末端,这意味着另一个的后缀应该等于Z的后缀:
A[m, j] := Y[j) = Z[m+j)
A[i, n] := X[i) = Z[i+n)
A[m, n] := true
If you first fill the border of the array (A[m, j]
and A[i, n]
, for all i, j
), you can then simply loop back towards A[0, 0]
and set the entries appropriately. In the end A[0, 0]
is your answer.
如果您首先填充数组的边界(A[m, j]和[i, n],对于所有i, j),那么您可以简单地返回到[0,0],并适当地设置条目。最后A[0,0]是你的答案。
#3
1
It is defined by following recurrence relation:-
它由以下递归关系定义:-。
S(i,j,k) = false
if(Z(i)==Y(k))
S(i,j,k) = S(i,j,k)||S(i+1,j,k+1)
if(Z(i)==X(j))
S(i,j,k) = S(i,j,k)||S(i+1,j+1,k)
Where S(i,j,k) corresponds to Z[i to end] formed by shuffle of X[j to end] and Y[K to end]
You should try to code this into DP on your own.
您应该尝试自己将其编码到DP。
#4
-1
Key points:
重点:
- All strings shouldn't be null or empty.
- 所有字符串不应该是空的。
- The sum of the 2 strings length should be equal to the third string.
- 两个字符串长度的和应该等于第三个字符串。
- The third string should not contain the substrings of the 2 strings.
- 第三个字符串不应该包含两个字符串的子字符串。
- Else create arrays of characters , sort and compare.
- 其他创建字符数组,排序和比较。
Code:
代码:
public static boolean validShuffle(String first, String second, String third){
boolean status=false;
if((first==null || second==null || third==null) || (first.isEmpty()|| second.isEmpty() || third.isEmpty())){
status = false;
} else if((first.length()+second.length()) !=third.length()){
//check if the sum of 2 lengths equals to the third string length
status = false;
} else if(third.indexOf(first,0)!=-1 || third.indexOf(second,0)!=-1){
//check if the third string contains substrings
status = false;
} else {
char [] c1_2=(first+second).toCharArray();
char [] c3 =third.toCharArray();
Arrays.sort(c1_2);
Arrays.sort(c3);
status=Arrays.equals(c1_2, c3);
}
return status;
}
#1
2
Following approach should give you an idea.
下面的方法会给你一个想法。
Define the condition d(s1,s2,s3) = (s1 + s2 == s3) { s3 is a shuffle of s1 and s2 }
定义条件d(s1,s2,s3) = (s1 + s2 == s3) {s3是s1和s2}的洗牌。
We have to find d( X, Y, Z )
.
我们要找到d(X, Y, Z)
if lengths of s1 and s2 are 1 each and length of s3 = 2,
如果s1和s2的长度分别为1和s3 = 2,
d( s1,s2,s3 ) = { (s1[0] == s3[0] && s2[0] == s3[1]) || (s1[0] == s3[1] && s2[0] == s3[0])
Similarly d can be obtained for empty strings.
同样的d可以用于空字符串。
For strings of arbitrary length, following relation holds.
对于任意长度的字符串,以下关系成立。
d( s1,s2,s3 ) = { ( d( s1-s1[last],s2,s3 - s3[last]) && s1[last] == s3[last] )
|| ( d( s1,s2 - s2[last],s3 - s3[last]) && s2[last] == s3[last] )
}
You can compute the d()
entries starting from zero length strings and keep checking.
您可以计算从零长度字符串开始的d()项,并继续检查。
#2
2
First, let's start with some definitions. I write X[i]
for the i
th element of X
and X[i)
for the substring of X
starting at index i
.
首先,让我们从一些定义开始。我把X[I]写在X和X的第I个元素上,从索引I开始。
For example, if X = abcde
, then X[2] = c
and X[2) = cde
.
例如,如果X = abcde,那么X[2] = c和X[2] = cde。
Similar definitions hold for Y
and Z
.
对Y和Z也有类似的定义。
To solve the problem by dynamic programming, you should keep a 2D boolean array A
of size (n+1) x (m+1)
. In this array, A[i, j] = true
if and only if X[i)
and Y[j)
can be interleaved to form Z[i+j)
.
要用动态规划来解决这个问题,你应该保持一个二维布尔数组a的大小(n+1) x (m+1)。在这个数组中,A[i, j] = true,如果且仅当X[i]和Y[j]可以交错形成Z[i+j]。
For an arbitrary (i, j)
, somewhere in the middle of the 2D array, the recurrence relation is very simple:
对于任意(i, j),在二维数组中间的某个地方,递归关系非常简单:
A[i, j] := X[i] = Z[i+j] and A[i+1, j]
or Y[j] = Z[i+j] and A[i, j+1]
On the edges of the 2D array you have the case that either X
or Y
is already at its end, which means the suffix of the other should be equal to the suffix of Z
:
在二维数组的边,你有一个例子,X或Y已经在它的末端,这意味着另一个的后缀应该等于Z的后缀:
A[m, j] := Y[j) = Z[m+j)
A[i, n] := X[i) = Z[i+n)
A[m, n] := true
If you first fill the border of the array (A[m, j]
and A[i, n]
, for all i, j
), you can then simply loop back towards A[0, 0]
and set the entries appropriately. In the end A[0, 0]
is your answer.
如果您首先填充数组的边界(A[m, j]和[i, n],对于所有i, j),那么您可以简单地返回到[0,0],并适当地设置条目。最后A[0,0]是你的答案。
#3
1
It is defined by following recurrence relation:-
它由以下递归关系定义:-。
S(i,j,k) = false
if(Z(i)==Y(k))
S(i,j,k) = S(i,j,k)||S(i+1,j,k+1)
if(Z(i)==X(j))
S(i,j,k) = S(i,j,k)||S(i+1,j+1,k)
Where S(i,j,k) corresponds to Z[i to end] formed by shuffle of X[j to end] and Y[K to end]
You should try to code this into DP on your own.
您应该尝试自己将其编码到DP。
#4
-1
Key points:
重点:
- All strings shouldn't be null or empty.
- 所有字符串不应该是空的。
- The sum of the 2 strings length should be equal to the third string.
- 两个字符串长度的和应该等于第三个字符串。
- The third string should not contain the substrings of the 2 strings.
- 第三个字符串不应该包含两个字符串的子字符串。
- Else create arrays of characters , sort and compare.
- 其他创建字符数组,排序和比较。
Code:
代码:
public static boolean validShuffle(String first, String second, String third){
boolean status=false;
if((first==null || second==null || third==null) || (first.isEmpty()|| second.isEmpty() || third.isEmpty())){
status = false;
} else if((first.length()+second.length()) !=third.length()){
//check if the sum of 2 lengths equals to the third string length
status = false;
} else if(third.indexOf(first,0)!=-1 || third.indexOf(second,0)!=-1){
//check if the third string contains substrings
status = false;
} else {
char [] c1_2=(first+second).toCharArray();
char [] c3 =third.toCharArray();
Arrays.sort(c1_2);
Arrays.sort(c3);
status=Arrays.equals(c1_2, c3);
}
return status;
}