luogu P3198 [HNOI2008]遥远的行星

时间:2021-07-04 14:00:48

bzoj

洛谷

这题意是不是不太清楚

真正题意:求$$f_i=\sum_{j=1}^{\lfloor iA \rfloor} \frac{M_iM_j}{i-j}$$

似乎只能\(O(n*\lfloor n*A \rfloor)\)求

但是,注意只要结果的相对误差不超过 5% 即可

于是对于较大的\(i\)来说,\(f_i\)可以近似的看为\(M_i*\frac{\sum_{j=1}^{\lfloor i*A \rfloor} M_j}{i-\frac{\lfloor i*A \rfloor}{2}}\)

因为\(A\)是一个不超过0.35的实数,并且\(i\)较大时\(i-j\)也会比较大,所以近似一下可以接受

至于为什么,emmm你猜

#include<bits/stdc++.h>
#define LL long long
#define il inline
#define re register
#define inf 2099999999
#define max(a,b) ((a)>(b)?(a):(b))
#define min(a,b) ((a)<(b)?(a):(b))
#define db double
#define eps (1e-5) using namespace std;
const int N=100000+10;
il LL rd()
{
re LL x=0,w=1;re char ch=0;
while(ch<'0'||ch>'9') {if(ch=='-') w=-1;ch=getchar();}
while(ch>='0'&&ch<='9') {x=(x<<3)+(x<<1)+(ch^48);ch=getchar();}
return x*w;
}
int n,nn;
db a,m[N],ans; int main()
{
n=rd();scanf("%lf",&a);
for(int i=1;i<=n;i++) scanf("%lf",&m[i]);
nn=min(3000,n);
for(int i=1;i<=nn;i++)
{
int mm=(int)(i*a+eps);
ans=0;
for(int j=1;j<=mm;j++) ans+=m[j]/(db)(i-j);
ans*=m[i];
printf("%.8lf\n",ans);
}
db tm=0;
for(int i=nn+1,la=1;i<=n;i++)
{
int mm=(int)(i*a+eps);
while(la<=mm) tm+=m[la++];
ans=m[i]*tm/((db)i-(db)mm/2);
printf("%.8lf\n",ans);
}
return 0;
}