def FCN_Vgg16_32s(input_shape=None, weight_decay=0., batch_momentum=0.9, batch_shape=None, classes=21):
if batch_shape:
img_input = Input(batch_shape=batch_shape)
image_size = batch_shape[1:3]
else:
img_input = Input(shape=input_shape)
image_size = input_shape[0:2]
x = Conv2D(64, (3, 3), activation='relu', padding='same', name='block1_conv1', kernel_regularizer=l2(weight_decay))(img_input)
x = Conv2D(64, (3, 3), activation='relu', padding='same', name='block1_conv2', kernel_regularizer=l2(weight_decay))(x)
x = MaxPooling2D((2, 2), strides=(2, 2), name='block1_pool')(x)
x = Conv2D(128, (3, 3), activation='relu', padding='same', name='block2_conv1', kernel_regularizer=l2(weight_decay))(x)
x = Conv2D(128, (3, 3), activation='relu', padding='same', name='block2_conv2', kernel_regularizer=l2(weight_decay))(x)
x = MaxPooling2D((2, 2), strides=(2, 2), name='block2_pool')(x)
x = Conv2D(256, (3, 3), activation='relu', padding='same', name='block3_conv1', kernel_regularizer=l2(weight_decay))(x)
x = Conv2D(256, (3, 3), activation='relu', padding='same', name='block3_conv2', kernel_regularizer=l2(weight_decay))(x)
x = Conv2D(256, (3, 3), activation='relu', padding='same', name='block3_conv3', kernel_regularizer=l2(weight_decay))(x)
x = MaxPooling2D((2, 2), strides=(2, 2), name='block3_pool')(x)
x = Conv2D(512, (3, 3), activation='relu', padding='same', name='block4_conv1', kernel_regularizer=l2(weight_decay))(x)
x = Conv2D(512, (3, 3), activation='relu', padding='same', name='block4_conv2', kernel_regularizer=l2(weight_decay))(x)
x = Conv2D(512, (3, 3), activation='relu', padding='same', name='block4_conv3', kernel_regularizer=l2(weight_decay))(x)
x = MaxPooling2D((2, 2), strides=(2, 2), name='block4_pool')(x)
x = Conv2D(512, (3, 3), activation='relu', padding='same', name='block5_conv1', kernel_regularizer=l2(weight_decay))(x)
x = Conv2D(512, (3, 3), activation='relu', padding='same', name='block5_conv2', kernel_regularizer=l2(weight_decay))(x)
x = Conv2D(512, (3, 3), activation='relu', padding='same', name='block5_conv3', kernel_regularizer=l2(weight_decay))(x)
x = MaxPooling2D((2, 2), strides=(2, 2), name='block5_pool')(x)
x = Conv2D(4096, (7, 7), activation='relu', padding='same', name='fc1', kernel_regularizer=l2(weight_decay))(x)
x = Dropout(0.5)(x)
x = Conv2D(4096, (1, 1), activation='relu', padding='same', name='fc2', kernel_regularizer=l2(weight_decay))(x)
x = Dropout(0.5)(x)
x = Conv2D(classes, (1, 1), kernel_initializer='he_normal', activation='linear', padding='valid', strides=(1, 1), kernel_regularizer=l2(weight_decay))(x)
x = BilinearUpSampling2D(size=(32, 32))(x)
model = Model(img_input, x)
return model
model=FCN_VGG16_32s()
print(model.summary())
_________________________________________________________________
input_2 (InputLayer) (None, 224, 224, 3) 0
_________________________________________________________________
block1_conv1 (Conv2D) (None, 224, 224, 64) 1792
_________________________________________________________________
block1_conv2 (Conv2D) (None, 224, 224, 64) 36928
_________________________________________________________________
block1_pool (MaxPooling2D) (None, 112, 112, 64) 0
_________________________________________________________________
block2_conv1 (Conv2D) (None, 112, 112, 128) 73856
_________________________________________________________________
block2_conv2 (Conv2D) (None, 112, 112, 128) 147584
_________________________________________________________________
block2_pool (MaxPooling2D) (None, 56, 56, 128) 0
_________________________________________________________________
block3_conv1 (Conv2D) (None, 56, 56, 256) 295168
_________________________________________________________________
block3_conv2 (Conv2D) (None, 56, 56, 256) 590080
_________________________________________________________________
block3_conv3 (Conv2D) (None, 56, 56, 256) 590080
_________________________________________________________________
block3_pool (MaxPooling2D) (None, 28, 28, 256) 0
_________________________________________________________________
block4_conv1 (Conv2D) (None, 28, 28, 512) 1180160
_________________________________________________________________
block4_conv2 (Conv2D) (None, 28, 28, 512) 2359808
_________________________________________________________________
block4_conv3 (Conv2D) (None, 28, 28, 512) 2359808
_________________________________________________________________
block4_pool (MaxPooling2D) (None, 14, 14, 512) 0
_________________________________________________________________
block5_conv1 (Conv2D) (None, 14, 14, 512) 2359808
_________________________________________________________________
block5_conv2 (Conv2D) (None, 14, 14, 512) 2359808
_________________________________________________________________
block5_conv3 (Conv2D) (None, 14, 14, 512) 2359808
_________________________________________________________________
block5_pool (MaxPooling2D) (None, 7, 7, 512) 0
_________________________________________________________________
fc1 (Conv2D) (None, 7, 7, 4096) 102764544
_________________________________________________________________
dropout_3 (Dropout) (None, 7, 7, 4096) 0
_________________________________________________________________
fc2 (Conv2D) (None, 7, 7, 4096) 16781312
_________________________________________________________________
dropout_4 (Dropout) (None, 7, 7, 4096) 0
_________________________________________________________________
conv2d_2 (Conv2D) (None, 7, 7, 21) 86037
_________________________________________________________________
Total params: 134,346,581
Trainable params: 134,346,581
Non-trainable params: 0
_________________________________________________________________
None