I have an implementation of the AlexNet. I'm interested in extracting the vector of features of a trained model before the fully-connected classification layers
我有一个AlexNet的实现。我有兴趣在完全连接的分类层之前提取训练模型的特征向量
-
I want to first train the model (below I included the evaluation methods for training and testing).
我想首先训练模型(下面我包括了培训和测试的评估方法)。
-
How do I get a list of final output feature vectors (during the forward pass) for all the images in the training/test set before they get classified?
如何在训练/测试集中的所有图像被分类之前获得最终输出特征向量列表(在前向传递期间)?
Here is the code (full version available https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/3%20-%20Neural%20Networks/alexnet.py) :
这是代码(完整版可用https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/3%20-%20Neural%20Networks/alexnet.py):
weights = {
'wc1': tf.Variable(tf.random_normal([3, 3, 1, 64])),
'wc2': tf.Variable(tf.random_normal([3, 3, 64, 128])),
'wc3': tf.Variable(tf.random_normal([3, 3, 128, 256])),
'wd1': tf.Variable(tf.random_normal([4*4*256, 1024])),
'wd2': tf.Variable(tf.random_normal([1024, 1024])),
'out': tf.Variable(tf.random_normal([1024, 10]))
}
biases = {
'bc1': tf.Variable(tf.random_normal([64])),
'bc2': tf.Variable(tf.random_normal([128])),
'bc3': tf.Variable(tf.random_normal([256])),
'bd1': tf.Variable(tf.random_normal([1024])),
'bd2': tf.Variable(tf.random_normal([1024])),
'out': tf.Variable(tf.random_normal([n_classes]))
}
def alex_net(_X, _weights, _biases, _dropout):
# Reshape input picture
_X = tf.reshape(_X, shape=[-1, 28, 28, 1])
# Convolution Layer
conv1 = conv2d('conv1', _X, _weights['wc1'], _biases['bc1'])
# Max Pooling (down-sampling)
pool1 = max_pool('pool1', conv1, k=2)
# Apply Normalization
norm1 = norm('norm1', pool1, lsize=4)
# Apply Dropout
norm1 = tf.nn.dropout(norm1, _dropout)
# Convolution Layer
conv2 = conv2d('conv2', norm1, _weights['wc2'], _biases['bc2'])
...
# right before feeding the fully connected, classification layers
# I'm interested in the vector after the weights
# are applied during the forward pass of a trained model.
dense1 = tf.reshape(norm3, [-1, _weights['wd1'].get_shape().as_list()[0]])
# Relu activation
dense1 = tf.nn.relu(tf.matmul(dense1, _weights['wd1']) + _biases['bd1'], name='fc1')
# Relu activation
dense2 = tf.nn.relu(tf.matmul(dense1, _weights['wd2']) + _biases['bd2'], name='fc2')
# Output, class prediction
out = tf.matmul(dense2, _weights['out']) + _biases['out']
return out
pred = alex_net(x, weights, biases, keep_prob)
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(pred, y))
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)
# Evaluate model
correct_pred = tf.equal(tf.argmax(pred,1), tf.argmax(y,1))
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
# Launch the graph
with tf.Session() as sess:
sess.run(init)
step = 1
# Keep training until reach max iterations
summary_writer = tf.train.SummaryWriter('/tmp/tensorflow_logs', graph_def=sess.graph_def)
while step * batch_size < training_iters:
batch_xs, batch_ys = mnist.train.next_batch(batch_size)
# Fit training using batch data
sess.run(optimizer, feed_dict={x: batch_xs, y: batch_ys, keep_prob: dropout})
if step % display_step == 0:
# Calculate batch accuracy
acc = sess.run(accuracy, feed_dict={x: batch_xs, y: batch_ys, keep_prob: 1.})
# Calculate batch loss
loss = sess.run(cost, feed_dict={x: batch_xs, y: batch_ys, keep_prob: 1.})
print "Iter " + str(step*batch_size) + ", Minibatch Loss= " \
+ "{:.6f}".format(loss) + ", Training Accuracy= " + "{:.5f}".format(acc)
step += 1
print "Optimization Finished!"
# Calculate accuracy for 256 mnist test images
print "Testing Accuracy:", sess.run(accuracy, feed_dict={x: mnist.test.images[:256],
y: mnist.test.labels[:256],
keep_prob: 1.})
1 个解决方案
#1
2
It sounds like you want the value of dense2 from alex_net()? If so, you will need to return that from alex_net() in addition to out, so
听起来你想要alex_net()的dense2值?如果是这样,除了out之外,你还需要从alex_net()返回它,所以
return out
becomes
return dense2, out
and
pred = alex_net(x, weights, biases, keep_prob)
becomes
before_classification_layer, pred = alex_net(...)
Then you can fetch before_classification_layer when calling sess.run()
whenever you want that value. See tf.Session.run
in https://www.tensorflow.org/versions/0.6.0/api_docs/python/client.html#Session.run. Note that the fetches may be a list, so to avoid evaluating your graph twice in your example code, you can do
然后,只要您想要该值,就可以在调用sess.run()时获取before_classification_layer。请参阅https://www.tensorflow.org/versions/0.6.0/api_docs/python/client.html#Session.run中的tf.Session.run。请注意,提取可能是一个列表,因此为了避免在示例代码中对图表进行两次评估,您可以这样做
# Calculate batch accuracy and loss
acc, loss = sess.run([accuracy, cost], feed_dict={...})
instead of
# Calculate batch accuracy
acc = sess.run(accuracy, feed_dict={...})
# Calculate batch loss
loss = sess.run(cost, feed_dict={...})
(Adding before_classification_layer
to that list when desired.)
(需要时将before_classification_layer添加到该列表中。)
#1
2
It sounds like you want the value of dense2 from alex_net()? If so, you will need to return that from alex_net() in addition to out, so
听起来你想要alex_net()的dense2值?如果是这样,除了out之外,你还需要从alex_net()返回它,所以
return out
becomes
return dense2, out
and
pred = alex_net(x, weights, biases, keep_prob)
becomes
before_classification_layer, pred = alex_net(...)
Then you can fetch before_classification_layer when calling sess.run()
whenever you want that value. See tf.Session.run
in https://www.tensorflow.org/versions/0.6.0/api_docs/python/client.html#Session.run. Note that the fetches may be a list, so to avoid evaluating your graph twice in your example code, you can do
然后,只要您想要该值,就可以在调用sess.run()时获取before_classification_layer。请参阅https://www.tensorflow.org/versions/0.6.0/api_docs/python/client.html#Session.run中的tf.Session.run。请注意,提取可能是一个列表,因此为了避免在示例代码中对图表进行两次评估,您可以这样做
# Calculate batch accuracy and loss
acc, loss = sess.run([accuracy, cost], feed_dict={...})
instead of
# Calculate batch accuracy
acc = sess.run(accuracy, feed_dict={...})
# Calculate batch loss
loss = sess.run(cost, feed_dict={...})
(Adding before_classification_layer
to that list when desired.)
(需要时将before_classification_layer添加到该列表中。)