I want to know how to train a model in tensorflow
if the cost cannot be evaluated at every input. E.g. if my objective function tests whether some condition is met half of the time (with any deviation from this being penalised).
我想知道,如果成本不能在每次输入时进行评估,如何在tensorflow中对模型进行培训。例如,如果我的目标函数测试某一条件是否在一半的时间内得到满足(任何偏离该条件的行为都会受到惩罚)。
Previously I would write code similar to the following to define my cost function and backpropagation learner:
之前我将编写类似如下的代码来定义我的成本函数和反向传播学习者:
# Backward propagation
loss = tensorflow.losses.mean_squared_error(labels=y, predictions=yhat)
cost = tensorflow.reduce_mean(loss, name='cost')
updates = tensorflow.train.GradientDescentOptimizer(0.01).minimize(cost)
Where yhat
is a tensor producing some estimate of the output y
, and cost
is just the square of the difference between the true and predicted values.
yhat是一个生成输出y的估计值的张量,而成本只是真实值和预测值之间差的平方。
However, what if my objective function could only be calculated once we have all inputs (or some batch of data), and the derivative wasn't known?
但是,如果我的目标函数只能在我们有所有输入(或一些数据)且导数未知的情况下才能计算?
An example of this might be training a neural network to find a set of cartesian coordinates inside of some other function (e.g. inside the circle x^2 + y^2 = r^2
for various r
) 50% of the time. The space of correct and incorrect answers is not finite, and while the derivative of the cost with respect to the output cannot be calculated (making backpropagation impossible) the loss function itself is relatively simple to calculate.
一个例子可能是训练一个神经网络寻找一组笛卡尔坐标系内的其他功能(如圆内x ^ 2 + y ^ 2 = r ^ 2各种r)50%的时间。正确和不正确答案的空间不是有限的,而对于输出的代价的导数不能计算(使反向传播不可能),损失函数本身是相对简单的计算。
def loss(yhat_all, inputs):
for prediction, input in zip(yhat_all, inputs):
correct += is_inside(prediction, input)
return -abs(correct / len(inputs) - 0.5)
Obviously loss
is not a valid tensor in this case, I just wrote it out in native python code to illustrate the problem. Given the above example, how would I define my updates
tensor in this case? Obviously I can't use gradient descent, so I'll need to use a different optimiser, but I'm also at a loss how to even calculate the loss given that I can no longer use the normal losses
tensors that run over each individual output in isolation.
显然,在这种情况下,丢失不是一个有效的张量,我只是用原生python代码编写了它来说明问题。在上面的例子中,在这种情况下我如何定义我的更新张量?显然我不能使用梯度下降,所以我需要使用不同的优化器,但我也不知道如何计算损失,因为我不能再使用在每个单独输出上运行的正常损耗张量。
1 个解决方案
#1
2
First of all, what you can do is to define your own cost function over a whole batch instead of single inputs. Sticking with your circle example, you can do:
首先,您可以做的是在整个批中定义您自己的成本函数,而不是单个输入。坚持你的圈子的例子,你可以做:
inside_bool = ( tf.square( X_pred ) + tf.square( Y_pred ) ) < tf.square( r )
inside_float = tf.cast( inside_bool, tf.float32 )
proportion_inside = tf.reduce_mean( inside_float )
loss = -tf.abs( proportion_inside - 0.5 )
Another question is what the input to such a network would be. I'd suggest you just start with a random tensor. (Basically, build a generative network.)
另一个问题是这样一个网络的输入是什么。我建议你从一个随机张量开始。(基本上,建立一个生成网络。)
If your loss function is not derivable, it will be hard to train. So I'd suggest replace the non-derivable parts with derivable approximates. Most importantly, the inside-outside boolean could be a large root of the distance from the perimeter instead (maintaining sign.) Taking a large root approaches it to one. (Raising to power 0 would be the sign basically.) You can also add a regularizer that likes values around one and negative one. (This would ruin the distribution of your coordinates, however, if that's a factor.)
如果你的损失函数是不可推导的,那就很难训练了。所以我建议用可推导的近似代替不可导出的部分。最重要的是,内外布尔值可以是距离周长的一个大根值(保持符号)。取一个大根就可以得到1。(上升到0,基本上就是这个符号。)您还可以添加一个正则器,它喜欢1和- 1之间的值。(不过,如果这是一个因数,就会破坏坐标的分布。)
tf.abs()
is not such a big problem, that's basically L1 regularization. So with all that, an idea could be (untested code):
tf.abs()不是一个大问题,那基本上就是L1正则化。综上所述,一个想法可以是(未经测试的代码):
dist_from_perimeter = ( tf.square( X_pred ) + tf.square( Y_pred ) ) - tf.square( r )
dist_loss = tf.sign( dist_from_perimeter ) * tf.pow( tf.abs( dist_from_perimeter ), 0.2 ) # 0.2 for 5th root
inside = tf.reduce_mean( dist_loss ) # 0-based now!
loss = -tf.abs( inside )
This would force all the points on the perimeter, but the gradient will grow really large around the perimeter, so it's not likely to be able to stay there. They will oscillate inside-outside, but once the proportion settles down, they won't move much. (Or so I think... :) )
这将迫使圆周上的所有点,但是梯度会在圆周上增大,所以它不太可能停留在那里。它们会在外面振荡,但一旦比例稳定下来,它们就不会移动太多。(所以我认为……:))
If you have things other than a circle, then you have to come up with a reasonably easily calculable distance metric that would put close to equal pressure on both X and Y coordinates.
如果你除了圆以外还有别的东西,那么你就必须想出一个相当容易计算的距离度规,使X和Y坐标上的压强都接近相等。
Hope all this helped!
希望这一切帮助!
Wrote working code for this, albeit didn't investigate the internals of the generated results:
为此编写了工作代码,尽管没有研究生成结果的内部内容:
import tensorflow as tf
r = 1.0
rnd = tf.random_uniform( shape = ( 100, 50 ), dtype = tf.float32, minval = 0.0, maxval = 1.0 )
l1 = tf.layers.dense( rnd, 50, activation = tf.nn.relu, kernel_regularizer = tf.nn.l2_loss )
l2 = tf.layers.dense( l1, 50, activation = tf.nn.relu, kernel_regularizer = tf.nn.l2_loss )
l3 = tf.layers.dense( l2, 50, activation = None, kernel_regularizer = tf.nn.l2_loss )
X_pred = tf.layers.dense( l3, 1, activation = None, kernel_regularizer = tf.nn.l2_loss )
Y_pred = tf.layers.dense( l3, 1, activation = None, kernel_regularizer = tf.nn.l2_loss )
dist_from_perimeter = ( tf.square( X_pred ) + tf.square( Y_pred ) ) - tf.square( r )
dist_loss = tf.sign( dist_from_perimeter ) * tf.pow( tf.abs( dist_from_perimeter ), 0.5 ) # 0.5 for square root
inside = tf.reduce_mean( dist_loss ) # 0-based now!
loss = tf.abs( inside )
inside_binary = tf.sign(tf.sign( dist_from_perimeter ) + 1 )
prop = tf.reduce_mean( inside_binary )
global_step = tf.Variable(0, name='global_step', trainable=False)
updates = tf.train.GradientDescentOptimizer( 0.0001 ).minimize( loss )
with tf.Session() as sess:
init = tf.global_variables_initializer()
sess.run(init)
for step in xrange( 100000 ):
_, loss_value, prop_val = sess.run( [ updates, loss, prop ] )
if 0 == step % 2000:
print( "Step {}, loss {:.6f}, proportion inside: {:.4f}". format( step, loss_value, prop_val ) )
Output:
输出:
Step 0, loss 0.963431, proportion inside: 0.0000
Step 2000, loss 0.012302, proportion inside: 0.4900
Step 4000, loss 0.044224, proportion inside: 0.5300
Step 6000, loss 0.055603, proportion inside: 0.5400
Step 8000, loss 0.001739, proportion inside: 0.4100
Step 10000, loss 0.136604, proportion inside: 0.5900
Step 12000, loss 0.028738, proportion inside: 0.4600
Step 14000, loss 0.089664, proportion inside: 0.4100
Step 16000, loss 0.035139, proportion inside: 0.4900
Step 18000, loss 0.021432, proportion inside: 0.5100
Step 20000, loss 0.008821, proportion inside: 0.4600
Step 22000, loss 0.079573, proportion inside: 0.5500
Step 24000, loss 0.145942, proportion inside: 0.3700
Step 26000, loss 0.009984, proportion inside: 0.4700
Step 28000, loss 0.010401, proportion inside: 0.4700
Step 30000, loss 0.077145, proportion inside: 0.4000
Step 32000, loss 0.029588, proportion inside: 0.5300
Step 34000, loss 0.032815, proportion inside: 0.5100
Step 36000, loss 0.081417, proportion inside: 0.4000
Step 38000, loss 0.079384, proportion inside: 0.3900
Step 40000, loss 0.040977, proportion inside: 0.5500
Step 42000, loss 0.095768, proportion inside: 0.5900
Step 44000, loss 0.012109, proportion inside: 0.5300
Step 46000, loss 0.064089, proportion inside: 0.4200
Step 48000, loss 0.001401, proportion inside: 0.4700
Step 50000, loss 0.024378, proportion inside: 0.5400
Step 52000, loss 0.037057, proportion inside: 0.4900
Step 54000, loss 0.004553, proportion inside: 0.4800
Step 56000, loss 0.097677, proportion inside: 0.4000
Step 58000, loss 0.060175, proportion inside: 0.5300
Step 60000, loss 0.008686, proportion inside: 0.4800
Step 62000, loss 0.077828, proportion inside: 0.3600
Step 64000, loss 0.000750, proportion inside: 0.4600
Step 66000, loss 0.071392, proportion inside: 0.5700
Step 68000, loss 0.066447, proportion inside: 0.5600
Step 70000, loss 0.057511, proportion inside: 0.5600
Step 72000, loss 0.008800, proportion inside: 0.5400
Step 74000, loss 0.000322, proportion inside: 0.5200
Step 76000, loss 0.002286, proportion inside: 0.4700
Step 78000, loss 0.008778, proportion inside: 0.4900
Step 80000, loss 0.044092, proportion inside: 0.4500
Step 82000, loss 0.018876, proportion inside: 0.4600
Step 84000, loss 0.108120, proportion inside: 0.3500
Step 86000, loss 0.054647, proportion inside: 0.5600
Step 88000, loss 0.024990, proportion inside: 0.4600
Step 90000, loss 0.030924, proportion inside: 0.4700
Step 92000, loss 0.021789, proportion inside: 0.5100
Step 94000, loss 0.066370, proportion inside: 0.5600
Step 96000, loss 0.057060, proportion inside: 0.4100
Step 98000, loss 0.030641, proportion inside: 0.5200步骤0,损失0.963431,内部比例:0.963431步骤2000,损失0.012302,内部比例:0.4900步骤4000,损失0.044224,内部比例:0.5300步骤6000,损失0.055603,内部比例:0.5400步骤8000,损失0.001739,内部比例:0.4100步骤10000,损失0.136604,内部比例:0.5900步骤12000,损失0.028738,内部比例:0.4600步骤14000,损失0.089664,内部比例:0.4100步骤16000,损失0.035139,内部比例:0.4900步骤18000,损失0.4900,内部比例:0.5100步骤20000,损失0.008821,内部比例:0.4600步骤22000,损失0.079573,内部比例:0.5500步骤24000,损失0.145942,内部比例:0.3700步骤26000,损失0.009984,内部比例:0.4700步骤28000,损失0.010401,内部比例:0.4700步骤30000,损失0.077145,内部比例:0.4000步骤32000,损失0.029588,内部比例:0.5300步骤34000,损失0.032815,内部比例:0.5100步骤36000,损失0.5100,内部比例:0.4000步骤38000,损失0.079384,内部比例:0.3900步骤40000,损失0.040977,内部比例:0.5500步骤42000,损失0.095768,内部比例:0.5900步骤44000,损失0.012109,内部比例:0.5300步骤46000,损失0.064089,内部比例:0.4200步骤48000,损失0.001401,内部比例:0.4700步骤50000,损失0.024378,内部比例:0.5400步骤52000,损失0.037057,内部比例:0.4900步骤54000,损失0.4900,内部比例:0.4800步骤56000,损失0.097677,内部比例:0.4000步骤58000,损失0.060175,内部比例:0.5300步骤60000,损失0.008686,内部比例:0.4800步骤62000,损失0.077828,内部比例:0.3600步骤64000,损失0.000750,内部比例:0.4600步骤66000,损失0.071392,内部比例:0.5700步骤68000,损失0.066447,内部比例:0.5600步骤70000,损失0.057511,内部比例:0.5600步骤72000,损失0.5600,内部比例:0.5400步骤74000,损失0.000322,内部比例:0.5200步骤76000,损失0.002286,内部比例:0.4700步骤78000,损失0.008778,内部比例:0.4900步骤80000,损失0.044092,内部比例:0.4500步骤82000,损失0.018876,内部比例:0.4600步骤84000,损失0.108120,内部比例:0.3500步骤86000,损失0.054647,内部比例:0.5600步骤88000,损失0.024990,内部比例:0.4600步90000,损失0.030924,比例内:0.4700步92000,损失0.021789,比例内:0.5100步94000,损失0.066370,比例内:0.5600步96000,损失0.057060,比例内:0.4100步98000,损失0.030641,比例内:0.5200
#1
2
First of all, what you can do is to define your own cost function over a whole batch instead of single inputs. Sticking with your circle example, you can do:
首先,您可以做的是在整个批中定义您自己的成本函数,而不是单个输入。坚持你的圈子的例子,你可以做:
inside_bool = ( tf.square( X_pred ) + tf.square( Y_pred ) ) < tf.square( r )
inside_float = tf.cast( inside_bool, tf.float32 )
proportion_inside = tf.reduce_mean( inside_float )
loss = -tf.abs( proportion_inside - 0.5 )
Another question is what the input to such a network would be. I'd suggest you just start with a random tensor. (Basically, build a generative network.)
另一个问题是这样一个网络的输入是什么。我建议你从一个随机张量开始。(基本上,建立一个生成网络。)
If your loss function is not derivable, it will be hard to train. So I'd suggest replace the non-derivable parts with derivable approximates. Most importantly, the inside-outside boolean could be a large root of the distance from the perimeter instead (maintaining sign.) Taking a large root approaches it to one. (Raising to power 0 would be the sign basically.) You can also add a regularizer that likes values around one and negative one. (This would ruin the distribution of your coordinates, however, if that's a factor.)
如果你的损失函数是不可推导的,那就很难训练了。所以我建议用可推导的近似代替不可导出的部分。最重要的是,内外布尔值可以是距离周长的一个大根值(保持符号)。取一个大根就可以得到1。(上升到0,基本上就是这个符号。)您还可以添加一个正则器,它喜欢1和- 1之间的值。(不过,如果这是一个因数,就会破坏坐标的分布。)
tf.abs()
is not such a big problem, that's basically L1 regularization. So with all that, an idea could be (untested code):
tf.abs()不是一个大问题,那基本上就是L1正则化。综上所述,一个想法可以是(未经测试的代码):
dist_from_perimeter = ( tf.square( X_pred ) + tf.square( Y_pred ) ) - tf.square( r )
dist_loss = tf.sign( dist_from_perimeter ) * tf.pow( tf.abs( dist_from_perimeter ), 0.2 ) # 0.2 for 5th root
inside = tf.reduce_mean( dist_loss ) # 0-based now!
loss = -tf.abs( inside )
This would force all the points on the perimeter, but the gradient will grow really large around the perimeter, so it's not likely to be able to stay there. They will oscillate inside-outside, but once the proportion settles down, they won't move much. (Or so I think... :) )
这将迫使圆周上的所有点,但是梯度会在圆周上增大,所以它不太可能停留在那里。它们会在外面振荡,但一旦比例稳定下来,它们就不会移动太多。(所以我认为……:))
If you have things other than a circle, then you have to come up with a reasonably easily calculable distance metric that would put close to equal pressure on both X and Y coordinates.
如果你除了圆以外还有别的东西,那么你就必须想出一个相当容易计算的距离度规,使X和Y坐标上的压强都接近相等。
Hope all this helped!
希望这一切帮助!
Wrote working code for this, albeit didn't investigate the internals of the generated results:
为此编写了工作代码,尽管没有研究生成结果的内部内容:
import tensorflow as tf
r = 1.0
rnd = tf.random_uniform( shape = ( 100, 50 ), dtype = tf.float32, minval = 0.0, maxval = 1.0 )
l1 = tf.layers.dense( rnd, 50, activation = tf.nn.relu, kernel_regularizer = tf.nn.l2_loss )
l2 = tf.layers.dense( l1, 50, activation = tf.nn.relu, kernel_regularizer = tf.nn.l2_loss )
l3 = tf.layers.dense( l2, 50, activation = None, kernel_regularizer = tf.nn.l2_loss )
X_pred = tf.layers.dense( l3, 1, activation = None, kernel_regularizer = tf.nn.l2_loss )
Y_pred = tf.layers.dense( l3, 1, activation = None, kernel_regularizer = tf.nn.l2_loss )
dist_from_perimeter = ( tf.square( X_pred ) + tf.square( Y_pred ) ) - tf.square( r )
dist_loss = tf.sign( dist_from_perimeter ) * tf.pow( tf.abs( dist_from_perimeter ), 0.5 ) # 0.5 for square root
inside = tf.reduce_mean( dist_loss ) # 0-based now!
loss = tf.abs( inside )
inside_binary = tf.sign(tf.sign( dist_from_perimeter ) + 1 )
prop = tf.reduce_mean( inside_binary )
global_step = tf.Variable(0, name='global_step', trainable=False)
updates = tf.train.GradientDescentOptimizer( 0.0001 ).minimize( loss )
with tf.Session() as sess:
init = tf.global_variables_initializer()
sess.run(init)
for step in xrange( 100000 ):
_, loss_value, prop_val = sess.run( [ updates, loss, prop ] )
if 0 == step % 2000:
print( "Step {}, loss {:.6f}, proportion inside: {:.4f}". format( step, loss_value, prop_val ) )
Output:
输出:
Step 0, loss 0.963431, proportion inside: 0.0000
Step 2000, loss 0.012302, proportion inside: 0.4900
Step 4000, loss 0.044224, proportion inside: 0.5300
Step 6000, loss 0.055603, proportion inside: 0.5400
Step 8000, loss 0.001739, proportion inside: 0.4100
Step 10000, loss 0.136604, proportion inside: 0.5900
Step 12000, loss 0.028738, proportion inside: 0.4600
Step 14000, loss 0.089664, proportion inside: 0.4100
Step 16000, loss 0.035139, proportion inside: 0.4900
Step 18000, loss 0.021432, proportion inside: 0.5100
Step 20000, loss 0.008821, proportion inside: 0.4600
Step 22000, loss 0.079573, proportion inside: 0.5500
Step 24000, loss 0.145942, proportion inside: 0.3700
Step 26000, loss 0.009984, proportion inside: 0.4700
Step 28000, loss 0.010401, proportion inside: 0.4700
Step 30000, loss 0.077145, proportion inside: 0.4000
Step 32000, loss 0.029588, proportion inside: 0.5300
Step 34000, loss 0.032815, proportion inside: 0.5100
Step 36000, loss 0.081417, proportion inside: 0.4000
Step 38000, loss 0.079384, proportion inside: 0.3900
Step 40000, loss 0.040977, proportion inside: 0.5500
Step 42000, loss 0.095768, proportion inside: 0.5900
Step 44000, loss 0.012109, proportion inside: 0.5300
Step 46000, loss 0.064089, proportion inside: 0.4200
Step 48000, loss 0.001401, proportion inside: 0.4700
Step 50000, loss 0.024378, proportion inside: 0.5400
Step 52000, loss 0.037057, proportion inside: 0.4900
Step 54000, loss 0.004553, proportion inside: 0.4800
Step 56000, loss 0.097677, proportion inside: 0.4000
Step 58000, loss 0.060175, proportion inside: 0.5300
Step 60000, loss 0.008686, proportion inside: 0.4800
Step 62000, loss 0.077828, proportion inside: 0.3600
Step 64000, loss 0.000750, proportion inside: 0.4600
Step 66000, loss 0.071392, proportion inside: 0.5700
Step 68000, loss 0.066447, proportion inside: 0.5600
Step 70000, loss 0.057511, proportion inside: 0.5600
Step 72000, loss 0.008800, proportion inside: 0.5400
Step 74000, loss 0.000322, proportion inside: 0.5200
Step 76000, loss 0.002286, proportion inside: 0.4700
Step 78000, loss 0.008778, proportion inside: 0.4900
Step 80000, loss 0.044092, proportion inside: 0.4500
Step 82000, loss 0.018876, proportion inside: 0.4600
Step 84000, loss 0.108120, proportion inside: 0.3500
Step 86000, loss 0.054647, proportion inside: 0.5600
Step 88000, loss 0.024990, proportion inside: 0.4600
Step 90000, loss 0.030924, proportion inside: 0.4700
Step 92000, loss 0.021789, proportion inside: 0.5100
Step 94000, loss 0.066370, proportion inside: 0.5600
Step 96000, loss 0.057060, proportion inside: 0.4100
Step 98000, loss 0.030641, proportion inside: 0.5200步骤0,损失0.963431,内部比例:0.963431步骤2000,损失0.012302,内部比例:0.4900步骤4000,损失0.044224,内部比例:0.5300步骤6000,损失0.055603,内部比例:0.5400步骤8000,损失0.001739,内部比例:0.4100步骤10000,损失0.136604,内部比例:0.5900步骤12000,损失0.028738,内部比例:0.4600步骤14000,损失0.089664,内部比例:0.4100步骤16000,损失0.035139,内部比例:0.4900步骤18000,损失0.4900,内部比例:0.5100步骤20000,损失0.008821,内部比例:0.4600步骤22000,损失0.079573,内部比例:0.5500步骤24000,损失0.145942,内部比例:0.3700步骤26000,损失0.009984,内部比例:0.4700步骤28000,损失0.010401,内部比例:0.4700步骤30000,损失0.077145,内部比例:0.4000步骤32000,损失0.029588,内部比例:0.5300步骤34000,损失0.032815,内部比例:0.5100步骤36000,损失0.5100,内部比例:0.4000步骤38000,损失0.079384,内部比例:0.3900步骤40000,损失0.040977,内部比例:0.5500步骤42000,损失0.095768,内部比例:0.5900步骤44000,损失0.012109,内部比例:0.5300步骤46000,损失0.064089,内部比例:0.4200步骤48000,损失0.001401,内部比例:0.4700步骤50000,损失0.024378,内部比例:0.5400步骤52000,损失0.037057,内部比例:0.4900步骤54000,损失0.4900,内部比例:0.4800步骤56000,损失0.097677,内部比例:0.4000步骤58000,损失0.060175,内部比例:0.5300步骤60000,损失0.008686,内部比例:0.4800步骤62000,损失0.077828,内部比例:0.3600步骤64000,损失0.000750,内部比例:0.4600步骤66000,损失0.071392,内部比例:0.5700步骤68000,损失0.066447,内部比例:0.5600步骤70000,损失0.057511,内部比例:0.5600步骤72000,损失0.5600,内部比例:0.5400步骤74000,损失0.000322,内部比例:0.5200步骤76000,损失0.002286,内部比例:0.4700步骤78000,损失0.008778,内部比例:0.4900步骤80000,损失0.044092,内部比例:0.4500步骤82000,损失0.018876,内部比例:0.4600步骤84000,损失0.108120,内部比例:0.3500步骤86000,损失0.054647,内部比例:0.5600步骤88000,损失0.024990,内部比例:0.4600步90000,损失0.030924,比例内:0.4700步92000,损失0.021789,比例内:0.5100步94000,损失0.066370,比例内:0.5600步96000,损失0.057060,比例内:0.4100步98000,损失0.030641,比例内:0.5200