AI - TensorFlow - 示例01:基本分类

时间:2022-08-02 13:51:26

基本分类

基本分类(Basic classification):https://www.tensorflow.org/tutorials/keras/basic_classification

Fashion MNIST数据集

tf.keras

是一种用于在TensorFlow中构建和训练模型的高阶API:https://www.tensorflow.org/api_docs/python/tf/keras/

示例

脚本内容

  1 # coding=utf-8
  2 import tensorflow as tf
  3 from tensorflow import keras
  4 import numpy as np
  5 import matplotlib.pyplot as plt
  6 import os
  7 
  8 os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
  9 print("TensorFlow version:", tf.__version__)  # TensorFlow版本
 10 
 11 # ### 加载数据集
 12 # 网络畅通的情况下,可以从 TensorFlow 直接访问 Fashion MNIST,只需导入和加载数据即可
 13 # 或者手工下载文件,并存放在“~/.keras/datasets”下的fashion-mnist目录
 14 fashion_mnist = keras.datasets.fashion_mnist
 15 (train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data()
 16 # 训练集:train_images 和 train_labels 数组,用于学习的数据
 17 # 测试集:test_images 和 test_labels 数组,用于测试模型
 18 # 图像images为28x28的NumPy数组,像素值介于0到255之间
 19 # 标签labels是整数数组,介于0到9之间,对应于图像代表的服饰所属的类别,每张图像都映射到一个标签
 20 
 21 class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat',
 22                'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot']  # 类别名称
 23 
 24 # ### 探索数据:了解数据格式
 25 print("train_images.shape: {}".format(train_images.shape))  # 训练集中有60000张图像,每张图像都为28x28像素
 26 print("train_labels len: {}".format(len(train_labels)))  # 训练集中有60000个标签
 27 print("train_labels: {}".format(train_labels))  # 每个标签都是一个介于 0 到 9 之间的整数
 28 print("test_images.shape: {}".format(test_images.shape))  # 测试集中有10000张图像,每张图像都为28x28像素
 29 print("test_labels len: {}".format(len(test_labels)))  # 测试集中有10000个标签
 30 print("test_labels: {}".format(test_labels))
 31 
 32 # ### 预处理数据
 33 # 必须先对数据进行预处理,然后再训练网络
 34 plt.figure(num=1)  # 创建图形窗口,参数num是图像编号
 35 plt.imshow(train_images[0])  # 绘制图片
 36 plt.colorbar()  # 渐变色度条
 37 plt.grid(False)  # 显示网格
 38 plt.show()  # 显示
 39 plt.close()  # 关闭figure实例,如果要创建多个figure实例,必须显示调用close方法来释放不再使用的figure实例
 40 
 41 # 值缩小为0到1之间的浮点数
 42 train_images = train_images / 255.0
 43 test_images = test_images / 255.0
 44 
 45 # 显示训练集中的前25张图像,并在每张图像下显示类别名称
 46 plt.figure(num=2, figsize=(10, 10))  # 参数figsize指定宽和高,单位为英寸
 47 for i in range(25):  # 前25张图像
 48     plt.subplot(5, 5, i + 1)
 49     plt.xticks([])  # x坐标轴刻度
 50     plt.yticks([])  # y坐标轴刻度
 51     plt.grid(False)
 52     plt.imshow(train_images[i], cmap=plt.cm.binary)
 53     plt.xlabel(class_names[train_labels[i]])  # x坐标轴名称
 54 plt.show()
 55 plt.close()
 56 
 57 # ### 构建模型
 58 # 构建神经网络需要先配置模型的层,然后再编译模型
 59 # 设置层
 60 model = keras.Sequential([
 61     keras.layers.Flatten(input_shape=(28, 28)),  # 将图像格式从二维数组(28x28像素)转换成一维数组(784 像素)
 62     keras.layers.Dense(128, activation=tf.nn.relu),  # 全连接神经层,具有128个节点(或神经元)
 63     keras.layers.Dense(10, activation=tf.nn.softmax)])  # 全连接神经层,具有10个节点的softmax层
 64 # 编译模型
 65 model.compile(optimizer=tf.train.AdamOptimizer(),  # 优化器:根据模型看到的数据及其损失函数更新模型的方式
 66               loss='sparse_categorical_crossentropy',  # 损失函数:衡量模型在训练期间的准确率。
 67               metrics=['accuracy'])  # 指标:用于监控训练和测试步骤;这里使用准确率(图像被正确分类的比例)
 68 
 69 # ### 训练模型
 70 # 将训练数据馈送到模型中,模型学习将图像与标签相关联
 71 model.fit(train_images,  # 训练数据
 72           train_labels,  # 训练数据
 73           epochs=5,  # 训练周期(训练模型迭代轮次)
 74           verbose=2  # 日志显示模式:0为安静模式, 1为进度条(默认), 2为每轮一行
 75           )  # 调用model.fit 方法开始训练,使模型与训练数据“拟合
 76 
 77 # ### 评估准确率
 78 # 比较模型在测试数据集上的表现
 79 test_loss, test_acc = model.evaluate(test_images, test_labels)
 80 print('Test loss: {} - Test accuracy: {}'.format(test_loss, test_acc))
 81 
 82 # ### 做出预测
 83 predictions = model.predict(test_images)
 84 print("The first prediction: {}".format(predictions[0]))  # 查看第一个预测结果(包含10个数字的数组,分别对应10种服饰的“置信度”
 85 label_number = np.argmax(predictions[0])  # 置信度值最大的标签
 86 print("label: {} - class name: {}".format(label_number, class_names[label_number]))
 87 print("Result true or false: {}".format(test_labels[0] == label_number))  # 对比测试标签,查看该预测是否正确
 88 
 89 
 90 # 可视化:将该预测绘制成图来查看全部10个通道
 91 def plot_image(m, predictions_array, true_label, img):
 92     predictions_array, true_label, img = predictions_array[m], true_label[m], img[m]
 93     plt.grid(False)
 94     plt.xticks([])
 95     plt.yticks([])
 96     plt.imshow(img, cmap=plt.cm.binary)
 97     predicted_label = np.argmax(predictions_array)
 98     if predicted_label == true_label:
 99         color = 'blue'  # 正确的预测标签为蓝色
100     else:
101         color = 'red'  # 错误的预测标签为红色
102     plt.xlabel("{} {:2.0f}% ({})".format(class_names[predicted_label],
103                                          100 * np.max(predictions_array),
104                                          class_names[true_label]),
105                color=color)
106 
107 
108 def plot_value_array(n, predictions_array, true_label):
109     predictions_array, true_label = predictions_array[n], true_label[n]
110     plt.grid(False)
111     plt.xticks([])
112     plt.yticks([])
113     thisplot = plt.bar(range(10), predictions_array, color="#777777")
114     plt.ylim([0, 1])
115     predicted_label = np.argmax(predictions_array)
116     thisplot[predicted_label].set_color('red')
117     thisplot[true_label].set_color('blue')
118 
119 
120 # 查看第0张图像、预测和预测数组
121 i = 0
122 plt.figure(num=3, figsize=(8, 5))
123 plt.subplot(1, 2, 1)
124 plot_image(i, predictions, test_labels, test_images)
125 plt.subplot(1, 2, 2)
126 plot_value_array(i, predictions, test_labels)
127 plt.xticks(range(10), class_names, rotation=45)  # x坐标轴刻度,参数rotation表示label旋转显示角度
128 plt.show()
129 plt.close()
130 
131 # 查看第12张图像、预测和预测数组
132 i = 12
133 plt.figure(num=4, figsize=(8, 5))
134 plt.subplot(1, 2, 1)
135 plot_image(i, predictions, test_labels, test_images)
136 plt.subplot(1, 2, 2)
137 plot_value_array(i, predictions, test_labels)
138 plt.xticks(range(10), class_names, rotation=45)  # range(10)作为x轴的刻度,class_names作为对应的标签
139 plt.show()
140 plt.close()
141 
142 # 绘制图像:正确的预测标签为蓝色,错误的预测标签为红色,数字表示预测标签的百分比(总计为 100)
143 num_rows = 5
144 num_cols = 3
145 num_images = num_rows * num_cols
146 plt.figure(num=5, figsize=(2 * 2 * num_cols, 2 * num_rows))
147 for i in range(num_images):
148     plt.subplot(num_rows, 2 * num_cols, 2 * i + 1)
149     plot_image(i, predictions, test_labels, test_images)
150     plt.subplot(num_rows, 2 * num_cols, 2 * i + 2)
151     plot_value_array(i, predictions, test_labels)
152     plt.xticks(range(10), class_names, rotation=45)
153 plt.show()
154 plt.close()
155 
156 # 使用经过训练的模型对单个图像进行预测
157 image = test_images[0]  # 从测试数据集获得一个图像
158 print("img shape: {}".format(image.shape))  # 图像的shape信息
159 image = (np.expand_dims(image, 0))  # 添加到列表中
160 print("img shape: {}".format(image.shape))
161 predictions_single = model.predict(image)  # model.predict返回一组列表,每个列表对应批次数据中的每张图像
162 print("prediction_single: {}".format(predictions_single))  # 查看预测,预测结果是一个具有10个数字的数组,分别对应10种不同服饰的“置信度”
163 
164 plt.figure(num=6)
165 plot_value_array(0, predictions_single, test_labels)
166 plt.xticks(range(10), class_names, rotation=45)
167 plt.show()
168 plt.close()
169 
170 prediction_result = np.argmax(predictions_single[0])  # 获取批次数据中相应图像的预测结果(置信度值最大的标签)
171 print("prediction_result: {}".format(prediction_result))
172 
173 # ### tf.keras
174 # - 一种用于在TensorFlow中构建和训练模型的高阶API:
175 # - https://www.tensorflow.org/api_docs/python/tf/keras/
176 #
177 # ### Fashion MNIST数据集
178 # - 经典 MNIST 数据集(常用作计算机视觉机器学习程序的“Hello, World”入门数据集)的简易替换
179 # - 包含训练数据60000个,测试数据10000个,每个图片是28x28像素的灰度图像,涵盖10个类别
180 # - https://keras.io/datasets/#fashion-mnist-database-of-fashion-articles
181 # - TensorFlow:https://www.tensorflow.org/api_docs/python/tf/keras/datasets/fashion_mnist
182 # - GitHub:https://github.com/zalandoresearch/fashion-mnist
183 #
184 # ### 过拟合
185 # 如果机器学习模型在新数据上的表现不如在训练数据上的表现,就表示出现过拟合

 

运行结果

common line

C:\Users\anliven\AppData\Local\conda\conda\envs\mlcc\python.exe D:/Anliven/Anliven-Code/PycharmProjects/TempTest/TempTest.py
TensorFlow version: 1.12.0
train_images.shape: (60000, 28, 28)
train_labels len: 60000
train_labels: [9 0 0 ... 3 0 5]
test_images.shape: (10000, 28, 28)
test_labels len: 10000
test_labels: [9 2 1 ... 8 1 5]
Epoch 1/5
 - 3s - loss: 0.5077 - acc: 0.8211
Epoch 2/5
 - 3s - loss: 0.3790 - acc: 0.8632
Epoch 3/5
 - 3s - loss: 0.3377 - acc: 0.8755
Epoch 4/5
 - 3s - loss: 0.3120 - acc: 0.8855
Epoch 5/5
 - 3s - loss: 0.2953 - acc: 0.8914

   32/10000 [..............................] - ETA: 15s
 2208/10000 [=====>........................] - ETA: 0s 
 4576/10000 [============>.................] - ETA: 0s
 7008/10000 [====================>.........] - ETA: 0s
 9344/10000 [===========================>..] - ETA: 0s
10000/10000 [==============================] - 0s 30us/step
Test loss: 0.3584352566242218 - Test accuracy: 0.8711
The first prediction: [4.9706377e-06 2.2675355e-09 1.3649772e-07 3.6149192e-08 4.7982059e-08
 8.5262489e-03 1.5245891e-05 3.2628113e-03 1.6874857e-05 9.8817366e-01]
label: 9 - class name: Ankle boot
Result true or false: True
img shape: (28, 28)
img shape: (1, 28, 28)
prediction_single: [[4.9706327e-06 2.2675313e-09 1.3649785e-07 3.6149192e-08 4.7982059e-08
  8.5262526e-03 1.5245891e-05 3.2628146e-03 1.6874827e-05 9.8817366e-01]]
prediction_result: 9

Process finished with exit code 0

Figure1

AI - TensorFlow - 示例01:基本分类

Figure2

AI - TensorFlow - 示例01:基本分类

Figure3

AI - TensorFlow - 示例01:基本分类

Figure4

AI - TensorFlow - 示例01:基本分类

Figure5

AI - TensorFlow - 示例01:基本分类

Figure6

AI - TensorFlow - 示例01:基本分类

 

问题处理

问题1:执行fashion_mnist.load_data()失败

错误提示
Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/train-labels-idx1-ubyte.gz
......
Exception: URL fetch failure on https://storage.googleapis.com/tensorflow/tf-keras-datasets/train-labels-idx1-ubyte.gz: None -- [WinError 10060] A connection attempt failed because the connected party did not properly respond after a period of time, or established connection failed because connected host has failed to respond

处理方法1

选择一个链接,

手工下载下面四个文件,并存放在“~/.keras/datasets”下的fashion-mnist目录。

  • train-labels-idx1-ubyte.gz
  • train-images-idx3-ubyte.gz
  • t10k-labels-idx1-ubyte.gz
  • t10k-images-idx3-ubyte.gz
guowli@5CG450158J MINGW64 ~/.keras/datasets
$ pwd
/c/Users/guowli/.keras/datasets

guowli@5CG450158J MINGW64 ~/.keras/datasets
$ ls -l
total 0
drwxr-xr-x 1 guowli 1049089 0 Mar 27 14:44 fashion-mnist/

guowli@5CG450158J MINGW64 ~/.keras/datasets
$ ls -l fashion-mnist/
total 30164
-rw-r--r-- 1 guowli 1049089  4422102 Mar 27 15:47 t10k-images-idx3-ubyte.gz
-rw-r--r-- 1 guowli 1049089     5148 Mar 27 15:47 t10k-labels-idx1-ubyte.gz
-rw-r--r-- 1 guowli 1049089 26421880 Mar 27 15:47 train-images-idx3-ubyte.gz
-rw-r--r-- 1 guowli 1049089    29515 Mar 27 15:47 train-labels-idx1-ubyte.gz

处理方法2

手工下载文件,存放在指定目录。
改写“tensorflow\python\keras\datasets\fashion_mnist.py”定义的load_data()函数。

from tensorflow.python.keras.utils import get_file
import numpy as np
import pathlib
import gzip


def load_data():  # 改写“tensorflow\python\keras\datasets\fashion_mnist.py”定义的load_data()函数
    base = "file:///" + str(pathlib.Path.cwd()) + "\\"  # 当前目录

    files = [
        'train-labels-idx1-ubyte.gz', 'train-images-idx3-ubyte.gz',
        't10k-labels-idx1-ubyte.gz', 't10k-images-idx3-ubyte.gz'
    ]

    paths = []
    for fname in files:
        paths.append(get_file(fname, origin=base + fname))

    with gzip.open(paths[0], 'rb') as lbpath:
        y_train = np.frombuffer(lbpath.read(), np.uint8, offset=8)

    with gzip.open(paths[1], 'rb') as imgpath:
        x_train = np.frombuffer(
            imgpath.read(), np.uint8, offset=16).reshape(len(y_train), 28, 28)

    with gzip.open(paths[2], 'rb') as lbpath:
        y_test = np.frombuffer(lbpath.read(), np.uint8, offset=8)

    with gzip.open(paths[3], 'rb') as imgpath:
        x_test = np.frombuffer(
            imgpath.read(), np.uint8, offset=16).reshape(len(y_test), 28, 28)

    return (x_train, y_train), (x_test, y_test)


(train_images, train_labels), (test_images, test_labels) = load_data()

 

问题2:使用gzip.open()打开.gz文件失败

错误提示

“OSError: Not a gzipped file (b'\n\n')”

处理方法

对于损坏的、不完整的.gz文件,zip.open()将无法打开。检查.gz文件是否完整无损。

参考信息

https://github.com/tensorflow/tensorflow/issues/170