poj 2513 Colored Sticks (trie树+并查集+欧拉路)

时间:2021-02-06 13:43:57
Colored Sticks
Time Limit: 5000MS   Memory Limit: 128000K
Total Submissions: 40043   Accepted: 10406

Description

You are given a bunch of wooden sticks. Each endpoint of each stick is colored with some color. Is it possible to align the sticks in a straight line such that the colors of the endpoints that touch are of the same color?

Input

Input is a sequence of lines, each line contains two words, separated by spaces, giving the colors of the endpoints of one stick. A word is a sequence of lowercase letters no longer than 10 characters. There is no more than 250000 sticks.

Output

If the sticks can be aligned in the desired way, output a single line saying Possible, otherwise output Impossible.

Sample Input

blue red
red violet
cyan blue
blue magenta
magenta cyan

Sample Output

Possible

Hint

Huge input,scanf is recommended.
 
题目大意:
给定n根木棒,首尾各有一种颜色。求问有没有可能,将这些木棒连成一排,使得接头处颜色相同。
 
判断无向图是否存在欧拉路经典题。
一根木棒其实就是给两种颜色连上一条无向边(可能会有重边的)。那么一条欧拉路就相当于一种连接方式。
无向图存在欧拉图的条件:
1)联通。这个交给并查集就好了。
2)度数为奇数的点只能是0个或2个。这个建图的时候或建完图后都挺好处理的。
主要是如何建图呢。字符串太多了,要hash成数。用字典树比较合适。
每次遇见一种颜色,看字典树中有没有该颜色。如果有,返回该颜色的id,否则加入该颜色,id取全局变量++col。
 
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<queue>
#include<stack>
#include<deque>
typedef long long ll;
const int maxn=; int col;
struct ttrie
{
bool isword;
int id;
ttrie* next[];
ttrie()
{
isword=false;
for(int i=;i<;i++)
next[i]=NULL;
}
}; char str1[],str2[]; int add(ttrie* root,char str[])
{
ttrie *p=root,*q;
for(int i=;str[i]!='\0';i++)
{
int temp=str[i]-'a';
if(p->next[temp]==NULL)
{
q=new ttrie;
p->next[temp]=q;
p=q;
}
else
p=p->next[temp];
}
if(p->isword)
return p->id;
else
{
p->isword=true;
p->id=++col;
return p->id;
}
} int degree[maxn*+];
int cnt;
struct tedge
{
int u,v;
};
tedge edge[maxn+]; int fa[maxn*+]; int getfa(int x)
{
if(fa[x]==x)
return x;
else
return fa[x]=getfa(fa[x]);
} int main()
{
col=;
ttrie* root=new ttrie; memset(degree,,sizeof(degree));
cnt=;
while(scanf("%s%s",str1,str2)!=EOF)
{
int u=add(root,str1);
int v=add(root,str2);
degree[u]++;
degree[v]++;
edge[++cnt]=(tedge){u,v};
} bool flag=true;
for(int i=;i<=col;i++)
fa[i]=i;
int tot=col;
for(int i=;i<=cnt;i++)
{
int fx=getfa(edge[i].u);
int fy=getfa(edge[i].v);
if(fx!=fy)
{
fa[fx]=fy;
tot--;
}
}
if(tot>)
flag=false;
if(flag)
{
int odd=;
for(int i=;i<=col;i++)
{
if(degree[i]%)
odd++;
}
if(odd!=&&odd!=)
flag=false;
}
if(flag)
printf("Possible\n");
else
printf("Impossible\n"); return ;
}