题意 : 给你一个多边形,问你里边能够盛的下的最大的圆的半径是多少。
思路 :先二分半径r,半平面交向内推进r。模板题
#include <stdio.h>
#include <string.h>
#include <iostream>
#include <math.h>
const double eps = 1e- ; using namespace std ; struct node
{
double x;
double y ;
} p[],temp[],newp[];//p是最开始的多边形的每个点,temp是中间过程中临时存的多边形的每个点,newp是切割后的多边形的每个点
int n,newn ;//原来的点数,切割后的点数
double a,b,c ;//直线方程的三个系数 void getline(node x,node y)//求x与y两点确定的直线方程ax+by+c=0
{
a = y.y-x.y ;
b = x.x-y.x ;
c = y.x*x.y - y.y*x.x ;
}
node intersect(node x,node y)//求x与y点确定的直线与ax+by+c=0这条直线的交点
{
double u = fabs(a*x.x+b*x.y+c) ;
double v = fabs(a*y.x+b*y.y+c) ;
node t ;
t.x = (x.x*v+y.x*u)/(u+v) ;//y.y-x.y=u+v;y.y-t.y=v;y.y-x.y=u;
t.y = (x.y*v+y.y*u)/(u+v) ;
return t ;
}
void cut()
{
int cutn = ;
for(int i = ; i <= newn ; i++)
{
if(a*newp[i].x+b*newp[i].y+c >= )//所有的点都大于0,说明所有的点都在这条直线的另一边,所以不用切
temp[ ++cutn] = newp[i] ;
else
{
if(a*newp[i-].x+b*newp[i-].y+c > )
temp[++cutn ] = intersect(newp[i-],newp[i]) ;//把新交点加入
if(a*newp[i+].x+b*newp[i+].y+c > )
temp[ ++cutn] = intersect(newp[i+],newp[i]) ;
}
}
for(int i = ; i <= cutn ; i++)
newp[i] = temp[i] ;
newp[cutn+] = temp[] ;//能够找出所有点的前驱和后继
newp[] = temp[cutn] ;
newn = cutn ;
}
double dist(double x,double y)
{
return sqrt(x*x+y*y) ;
}
bool solve(double r)
{
for(int i = ; i <= n ; i++)
{
newp[i] = p[i] ;
}
p[n+] = p[] ;
newp[n+] = newp[] ;
newp[] = newp[n] ;
newn = n ;
for(int i = ; i <= n ; i++)
{
node t1,t2,t ;
t.x = p[i+].y-p[i].y ;
t.y = p[i].x-p[i+].x ;
double k = r/dist(t.x,t.y) ;
t.x *= k ;
t.y *= k ;
t1.x = t.x+p[i].x ;
t1.y = t.y+p[i].y ;
t2.x = t.x+p[i+].x ;
t2.y = t.y+p[i+].y ;
getline(t1,t2) ;//从头开始顺序遍历两个相邻点。
cut() ;
}
if(newn == )
return false ;
else return true ;
//求多边形核的面积
// double s = 0 ;
// for(int i = 1 ; i <= newn ; i++)
// s += newp[i].x*newp[i+1].y-newp[i].y*newp[i+1].x ;
// return s = fabs(s/2.0) ;
}
void guizhenghua()
{
for(int i = ; i < (n+)/ ; i++)//规整化方向,顺时针变逆时针,逆时针变顺时针。
swap(p[i],p[n-i]) ;
}
int main()
{
while(scanf("%d",&n)!=EOF && n)
{
for(int i = ; i <= n ; i++)
scanf("%lf %lf",&p[i].x,&p[i].y) ;
guizhenghua();
p[n+] = p[] ;
double high = ,low = 0.0,mid ;
while(high-low >= eps)
{
mid = (low+high)/2.0 ;
if(solve(mid)) low = mid ;
else high = mid ;
}
printf("%lf\n",high) ;
}
return ;
}