NumPy数组,更改索引列表中不存在的值

时间:2022-10-23 12:48:20

I have a numpy array like:

我有一个像numpy数组:

a = np.arange(30)

I know that I can replace the values located at positions indices=[2,3,4] using for instance fancy indexing:

我知道我可以使用例如花式索引替换位置indices = [2,3,4]的值:

a[indices] = 999

But how to replace the values at the positions that are not in indices? Would be something like below?

但是如何替换不在指数中的位置的值?会是这样的吗?

a[ not in indices ] = 888

Thank you!

谢谢!

4 个解决方案

#1


26  

I don't know of a clean way to do something like this:

我不知道干净的方法做这样的事情:

mask = np.ones(a.shape,dtype=bool) #np.ones_like(a,dtype=bool)
mask[indices] = False
a[~mask] = 999
a[mask] = 888

Of course, if you prefer to use the numpy data-type, you could use dtype=np.bool_ -- There won't be any difference in the output. it's just a matter of preference really.

当然,如果您更喜欢使用numpy数据类型,则可以使用dtype = np.bool_ - 输出中没有任何差异。这只是一个偏好的问题。

#2


5  

Only works for 1d arrays:

仅适用于1d数组:

a = np.arange(30)
indices = [2, 3, 4]

ia = np.indices(a.shape)

not_indices = np.setxor1d(ia, indices)
a[not_indices] = 888

#3


3  

Obviously there is no general not operator for sets. Your choices are:

显然,集合没有一般的非运算符。你的选择是:

  1. Subtracting your indices set from a universal set of indices (depends on the shape of a), but that will be a bit difficult to implement and read.
  2. 从一组通用索引中减去索引集(取决于a的形状),但这有点难以实现和阅读。
  3. Some kind of iteration (probably the for-loop is your best bet since you definitely want to use the fact that your indices are sorted).
  4. 某种迭代(可能for循环是你最好的选择,因为你肯定想要使用你的索引被排序的事实)。
  5. Creating a new array filled with new value, and selectively copying indices from the old one.

    创建一个填充了新值的新数组,并有选择地从旧数组中复制索引。

    b = np.repeat(888, a.shape)
    b[indices] = a[indices]
    

#4


3  

Just overcome similar situation, solved this way:

刚刚克服类似情况,解决了这个问题:

a = np.arange(30)
indices=[2,3,4]

a[indices] = 999

not_in_indices = [x for x in range(len(a)) if x not in indices]

a[not_in_indices] = 888

#1


26  

I don't know of a clean way to do something like this:

我不知道干净的方法做这样的事情:

mask = np.ones(a.shape,dtype=bool) #np.ones_like(a,dtype=bool)
mask[indices] = False
a[~mask] = 999
a[mask] = 888

Of course, if you prefer to use the numpy data-type, you could use dtype=np.bool_ -- There won't be any difference in the output. it's just a matter of preference really.

当然,如果您更喜欢使用numpy数据类型,则可以使用dtype = np.bool_ - 输出中没有任何差异。这只是一个偏好的问题。

#2


5  

Only works for 1d arrays:

仅适用于1d数组:

a = np.arange(30)
indices = [2, 3, 4]

ia = np.indices(a.shape)

not_indices = np.setxor1d(ia, indices)
a[not_indices] = 888

#3


3  

Obviously there is no general not operator for sets. Your choices are:

显然,集合没有一般的非运算符。你的选择是:

  1. Subtracting your indices set from a universal set of indices (depends on the shape of a), but that will be a bit difficult to implement and read.
  2. 从一组通用索引中减去索引集(取决于a的形状),但这有点难以实现和阅读。
  3. Some kind of iteration (probably the for-loop is your best bet since you definitely want to use the fact that your indices are sorted).
  4. 某种迭代(可能for循环是你最好的选择,因为你肯定想要使用你的索引被排序的事实)。
  5. Creating a new array filled with new value, and selectively copying indices from the old one.

    创建一个填充了新值的新数组,并有选择地从旧数组中复制索引。

    b = np.repeat(888, a.shape)
    b[indices] = a[indices]
    

#4


3  

Just overcome similar situation, solved this way:

刚刚克服类似情况,解决了这个问题:

a = np.arange(30)
indices=[2,3,4]

a[indices] = 999

not_in_indices = [x for x in range(len(a)) if x not in indices]

a[not_in_indices] = 888