I have two different numpy arrays given. First one is two-dimensional array which looks like (first ten points):
我给出了两个不同的numpy数组。第一个是二维数组,看起来像(前十点):
[[ 0. 0. ]
[ 12.54901961 18.03921569]
[ 13.7254902 17.64705882]
[ 14.11764706 17.25490196]
[ 14.90196078 17.25490196]
[ 14.50980392 17.64705882]
[ 14.11764706 17.64705882]
[ 14.50980392 17.25490196]
[ 17.64705882 18.03921569]
[ 21.17647059 34.11764706]]
the second array is just one-dimensional which looks like (first ten points):
第二个数组只是一维的,看起来像(前十点):
[ 18.03921569 17.64705882 17.25490196 17.25490196 17.64705882
17.64705882 17.25490196 17.64705882 21.17647059 22.35294118]
Values from the second (one-dimension) array could occur in first (two-dimension) one in the first column. F.e. 17.64705882
第二个(一维)数组中的值可能出现在第一列中的第一个(二维)数组中。 F.E. 17.64705882
I want to get an array from the two-dimension one where values of the first column match values in the second (one-dimension) array. How to do that?
我想从二维数组中获取一个数组,其中第一列的值与第二个(一维)数组中的值匹配。怎么做?
1 个解决方案
#1
5
You can use np.in1d(array1, array2)
to search in array1
each value of array2
. In your case you just have to take the first column of the first array:
您可以使用np.in1d(array1,array2)在array1中搜索array2的每个值。在您的情况下,您只需要获取第一个数组的第一列:
mask = np.in1d(a[:, 0], b)
#array([False, False, False, False, False, False, False, False, True, True], dtype=bool)
You can use this mask to obtain the encountered values:
您可以使用此掩码来获取遇到的值:
a[:, 0][mask]
#array([ 17.64705882, 21.17647059])
#1
5
You can use np.in1d(array1, array2)
to search in array1
each value of array2
. In your case you just have to take the first column of the first array:
您可以使用np.in1d(array1,array2)在array1中搜索array2的每个值。在您的情况下,您只需要获取第一个数组的第一列:
mask = np.in1d(a[:, 0], b)
#array([False, False, False, False, False, False, False, False, True, True], dtype=bool)
You can use this mask to obtain the encountered values:
您可以使用此掩码来获取遇到的值:
a[:, 0][mask]
#array([ 17.64705882, 21.17647059])