import datetime
import sys
import oss2
from itertools import islice
import pandas as pd
import re
import json
from pandas.tseries.offsets import Day
from multiprocessing import Process, JoinableQueue, cpu_count, Manager
import time def mkbuck(bk):
auth = oss2.Auth(username, password)
bucket = oss2.Bucket(auth, address, bk)
return bucket #获取前天最后一小时的paths
def getbflastpt(bucket, bfyespattern):
bfpamax = []
for bf in islice(oss2.ObjectIterator(bucket, prefix=bfyespattern), sys.maxsize):
c = bf.key
if c[-1:] != '/':
bfpamax.append(int(c.split('/')[4]))
last = pd.Series(bfpamax).unique().max()
if last < 10:
bflastpt = bfyespattern + '/0' + str(last)
else:
bflastpt = bfyespattern + '/' + str(last)
return bflastpt #获取当天第一个小时的paths
def getnowfirstpt(bucket, nowpattern):
bfpamin = []
for bf in islice(oss2.ObjectIterator(bucket, prefix=nowpattern), sys.maxsize):
c = bf.key
if c[-1:] != '/':
bfpamin.append(int(c.split('/')[4]))
first = pd.Series(bfpamin).unique().min()
if first < 10:
nowfirstpt = nowpattern + '/0' + str(first)
else:
nowfirstpt = nowpattern + '/' + str(first)
return nowfirstpt #获取所有的昨日paths,并合并得到完全的paths和数量
def getfullnum(bk, bfyespattern, nowpattern, yespattern):
lists = []
bucket = mkbuck(bk)
bfyespattern = getbflastpt(bucket, bfyespattern)
nowpattern = getnowfirstpt(bucket, nowpattern)
timelist = (s for s in (bfyespattern, yespattern, nowpattern))
for pter in timelist:
for bf in islice(oss2.ObjectIterator(bucket, prefix=pter), sys.maxsize):
c = bf.key
lists.append(c)
return lists, len(lists) #以下为进程间通信,即生产者、消费者模型
def getfull(bk, bfyespattern, nowpattern, yespattern, q):
lists, num = getfullnum(bk, bfyespattern, nowpattern, yespattern)
for c in lists:
q.put(c)
q.join() def consumer(bk, q, d):
bucket = mkbuck(bk)
repattern2 = re.compile('{.*"adadji",.*}')
while True:
js = []
ress = q.get()
if ress[-1:] != '/':
remote_data = bucket.get_object(ress).read().decode('utf-8')
aa = (d for d in repattern2.findall(remote_data))
for a in aa:
temdic = json.loads(a)
if (starttime <= temdic['created_at']) and (temdic['created_at'] <= endtime):
js.append(temdic)
df = pd.DataFrame(js, columns=['dd','cc'])
d[ress] = df##d为通过主进程Manager共享变量将数据取出
# print(ress)
q.task_done()# 向q.join()发送一次信号,证明一个数据已经被取走了 if __name__ == '__main__':
s1 = time.time()
now_time = datetime.datetime.now() # 获取当前时间
bfyes_time = (now_time - 2 * Day()).strftime('%Y/%m/%d')
yes_time = (now_time - 1 * Day()).strftime('%Y/%m/%d')
yesdate = (now_time - 1 * Day()).strftime('%Y-%m-%d')
yesdate1 = (now_time - 1 * Day()).strftime('%Y%m%d')
endtime = (now_time - 1 * Day()).strftime('%Y-%m-%d 23:59:59')
starttime = (now_time - 1 * Day()).strftime('%Y-%m-%d 00:00:00')
nowdate = now_time.strftime('%Y/%m/%d') bk = 'xxx'
bfyespattern = '%s/%s' % (bk, bfyes_time)
yespattern = '%s/%s' % (bk, yes_time)
nowpattern = '%s/%s' % (bk, nowdate) q = JoinableQueue(cpu_count())
m = Manager()
d = m.dict() ##创建进程间的共享内存字典,方便各个进程处理好的数据
p1 = Process(target=getfull, args=('xx', bfyespattern, nowpattern, yespattern, q))
#####生成consumer多进程
cc = []
for c in range(cpu_count() - 1):
c1 = Process(target=consumer, args=('xx', q, d))
cc.append(c1) p_l = [p1]
for c in cc:
c.daemon = True
p_l.append(c) for p in p_l:
p.start()
p1.join()
d = d.values()
df1 = pd.concat(d, ignore_index=True)
df1.sort_values('created_at', inplace=True)
print(time.time() - s1)
print('=' * 20)
print(df1)
说明:需求为获取昨日的数据即可,因oss实时数据存储可能存在提前或延迟情况,因此读取前天的最后一小时,昨日全部,当天最开始一小时数据,读者可根据自身情况进行修改