1103. Integer Factorization (30)

时间:2022-05-24 11:06:47

The K-P factorization of a positive integer N is to write N as the sum of the P-th power of K positive integers. You are supposed to write a program to find the K-P factorization of N for any positive integers N, K and P.

Input Specification:

Each input file contains one test case which gives in a line the three positive integers N (<=400), K (<=N) and P (1<P<=7). The numbers in a line are separated by a space.

Output Specification:

For each case, if the solution exists, output in the format:

N = n1^P + ... nK^P

where ni (i=1, ... K) is the i-th factor. All the factors must be printed in non-increasing order.

Note: the solution may not be unique. For example, the 5-2 factorization of 169 has 9 solutions, such as 122 + 42 + 22 + 22 + 12, or 112+ 62 + 22 + 22 + 22, or more. You must output the one with the maximum sum of the factors. If there is a tie, the largest factor sequence must be chosen -- sequence { a1, a2, ... aK } is said to be larger than { b1, b2, ... bK } if there exists 1<=L<=K such that ai=bi for i<L and aL>bL

If there is no solution, simple output "Impossible".

Sample Input 1:

169 5 2

Sample Output 1:

169 = 6^2 + 6^2 + 6^2 + 6^2 + 5^2

Sample Input 2:

169 167 3

Sample Output 2:

Impossible
 #include<stdio.h>
#include<string>
#include<iostream>
#include<string.h>
#include<sstream>
#include<vector>
#include<map>
#include<stdlib.h>
#include<queue>
#include<math.h>
#include<set>
using namespace std; int k,p;
int MAX = -;
vector<int> re;
void DFS(vector<int>& vv,int n)
{
if(vv.size() == k )
{
if(n == )
{
int sum = ;
for(int i = ;i < k;++i)
sum += vv[i];
if(sum >= MAX) // 需要等号,可使得 sequence { a1, a2, ... aK } is said to be larger than { b1, b2, ... bK } i
{
MAX = sum;
re = vv;
}
}
vv.pop_back();
return;
}
int low = vv.size() == ? : vv[vv.size() -];//剪枝 使得只有增序情况
int m = sqrt(double(n));
for(int i = low ; i <= m;++i)
{
int tmp = pow(double(i),p);
if(n >= tmp)
{
vv.push_back(i);
DFS(vv,n-tmp);
}else break;
}
if(!vv.empty())
vv.pop_back();
} int main()
{
int n;
scanf("%d%d%d",&n,&k,&p);
vector<int> vv;
DFS(vv, n);
if(re.empty())
{
printf("Impossible\n");
}
else
{
printf("%d = %d^%d",n,re[re.size()-],p);
for(int i = re.size() - ;i >= ;--i)
{
printf(" + %d^%d",re[i],p);
}
printf("\n");
}
return ;
}