I am practicing a sklearn
modeling on load_iris
data. When I initiate LogisticRegression
from sklearn.linear_model
I receive an error when I try to fit the data.
我在load_iris数据上练习sklearn建模。当我从sklearn开始逻辑回归的时候。当我试图拟合数据时,我收到一个错误。
Below you may check my code:
以下是我的代码:
from sklearn.datasets import load_iris
from sklearn.linear_model import LogisticRegression
logreg = LogisticRegression
iris = load_iris()
X = iris.data
y = iris.target
logreg.fit(X,y)
The code above prints out the following error:
以上代码打印出以下错误:
fit() missing 1 required positional argument y
fit()缺少1个必需的位置参数y。
Any help would be appreciated!
任何帮助都将被感激!
1 个解决方案
#1
1
You didn't instantiate LogisticRegression
; you forgot the parentheses:
你没有实例化LogisticRegression;你忘记了括号:
logreg = LogisticRegression()
The error message arises because logreg.fit(X, y)
can be thought of as syntactic sugar for LogisticRegression.fit(logreg, X, y)
. Since logreg
in your code is just another reference to the class, it is interpreting X
as the required instance of LogisticRegression
and y
as the first argument; thus, the second argument does appear to be missing.
错误消息出现是因为logreg。拟合(X, y)可以被认为是logistic回归的语法糖。fit(logreg, X, y)。因为logreg在您的代码中只是对类的另一个引用,它将X解释为逻辑回归和y作为第一个参数的必要实例;因此,第二个参数似乎丢失了。
#1
1
You didn't instantiate LogisticRegression
; you forgot the parentheses:
你没有实例化LogisticRegression;你忘记了括号:
logreg = LogisticRegression()
The error message arises because logreg.fit(X, y)
can be thought of as syntactic sugar for LogisticRegression.fit(logreg, X, y)
. Since logreg
in your code is just another reference to the class, it is interpreting X
as the required instance of LogisticRegression
and y
as the first argument; thus, the second argument does appear to be missing.
错误消息出现是因为logreg。拟合(X, y)可以被认为是logistic回归的语法糖。fit(logreg, X, y)。因为logreg在您的代码中只是对类的另一个引用,它将X解释为逻辑回归和y作为第一个参数的必要实例;因此,第二个参数似乎丢失了。