转载:网络流基础篇——Edmond-Karp算法 BY纳米黑客
网络流的相关定义:
- 源点:有n个点,有m条有向边,有一个点很特殊,只出不进,叫做源点。
- 汇点:另一个点也很特殊,只进不出,叫做汇点。
- 容量和流量:每条有向边上有两个量,容量和流量,从i到j的容量通常用c[i,j]表示,流量则通常是f[i,j].
通常可以把这些边想象成道路,流量就是这条道路的车流量,容量就是道路可承受的最大的车流量。很显然的,流量<=容量。而对于每个不是源点和汇点的点来说,可以类比的想象成没有存储功能的货物的中转站,所有“进入”他们的流量和等于所有从他本身“出去”的流量。
- 最大流:把源点比作工厂的话,问题就是求从工厂最大可以发出多少货物,是不至于超过道路的容量限制,也就是,最大流。
求解思路:
首先,假如所有边上的流量都没有超过容量(不大于容量),那么就把这一组流量,或者说,这个流,称为一个可行流。
一个最简单的例子就是,零流,即所有的流量都是0的流。
- (1).我们就从这个零流开始考虑,假如有这么一条路,这条路从源点开始一直一段一段的连到了汇点,并且,这条路上的每一段都满足流量<容量,注意,是严格的<,而不是<=。
- (2).那么,我们一定能找到这条路上的每一段的(容量-流量)的值当中的最小值delta。我们把这条路上每一段的流量都加上这个delta,一定可以保证这个流依然是可行流,这是显然的。
- (3).这样我们就得到了一个更大的流,他的流量是之前的流量+delta,而这条路就叫做增广路。我们不断地从起点开始寻找增广路,每次都对其进行增广,直到源点和汇点不连通,也就是找不到增广路为止。
- (4).当找不到增广路的时候,当前的流量就是最大流,这个结论非常重要。
补充:
- (1).寻找增广路的时候我们可以简单的从源点开始做BFS,并不断修改这条路上的delta 量,直到找到源点或者找不到增广路。
- (2).在程序实现的时候,我们通常只是用一个c 数组来记录容量,而不记录流量,当流量+delta 的时候,我们可以通过容量-delta 来实现,以方便程序的实现。
相关问题:
为什么要增加反向边?
在做增广路时可能会阻塞后面的增广路,或者说,做增广路本来是有个顺序才能找完最大流的。
但我们是任意找的,为了修正,就每次将流量加在了反向弧上,让后面的流能够进行自我调整。
举例:
比如说下面这个网络流模型
我们第一次找到了1-2-3-4这条增广路,这条路上的delta值显然是1。
于是我们修改后得到了下面这个流。(图中的数字是容量)
这时候(1,2)和(3,4)边上的流量都等于容量了,我们再也找不到其他的增广路了,当前的流量是1。
但是,
这个答案明显不是最大流,因为我们可以同时走1-2-4和1-3-4,这样可以得到流量为2的流。
那么我们刚刚的算法问题在哪里呢?
问题就在于我们没有给程序一个“后悔”的机会,应该有一个不走(2-3-4)而改走(2-4)的机制。
那么如何解决这个问题呢?
我们利用一个叫做反向边的概念来解决这个问题。即每条边(i,j)都有一条反向边(j,i),反向边也同样有它的容量。
我们直接来看它是如何解决的:
在第一次找到增广路之后,在把路上每一段的容量减少delta的同时,也把每一段上的反方向的容量增加delta。
c[x,y]-=delta;c[y,x]+=delta;我们来看刚才的例子,在找到1-2-3-4这条增广路之后,把容量修改成如下:
这时再找增广路的时候,就会找到1-3-2-4这条可增广量,即delta值为1的可增广路。将这条路增广之后,得到了最大流2。
那么,这么做为什么会是对的呢?
事实上,当我们第二次的增广路走3-2这条反向边的时候,就相当于把2-3这条正向边已经是用了的流量给“退”了回去,不走2-3这条路,而改走从2点出发的其他的路也就是2-4。
如果这里没有2-4怎么办?
这时假如没有2-4这条路的话,最终这条增广路也不会存在,因为他根本不能走到汇点
同时本来在3-4上的流量由1-3-4这条路来“接管”。而最终2-3这条路正向流量1,反向流量1,等于没有流。
附上自己写的Emonks_Karp:
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<queue>
using namespace std; const int INF=0xf777;
const int MAXN=; int n,m,ans;
int vis[MAXN],pre[MAXN];
int mp[MAXN][MAXN]; bool bfs(int s,int t)
{
memset(vis,,sizeof(vis));
memset(pre,,sizeof(pre));
vis[s]=;
queue<int> Q;
Q.push(s);
while(!Q.empty())
{
int q=Q.front();Q.pop();
if(q==t) return true;
for(int i=;i<=n;i++)
if(!vis[i]&&mp[q][i])
{
vis[i]=;
pre[i]=q;
Q.push(i);
}
}
return false;
} int Edmonds_Karp(int s,int t)
{
int ans=;
while(bfs(s,t))
{
int minn=INF;
for(int i=t;i!=s;i=pre[i])
minn=min(minn,mp[pre[i]][i]);
for(int i=t;i!=s;i=pre[i])
{
mp[pre[i]][i]-=minn;
mp[i][pre[i]]+=minn;
}
ans+=minn;
}
return ans;
} int main()
{
scanf("%d%d",&n,&m);
for(int i=;i<=m;i++)
{
int x,y,z;
scanf("%d%d%d",&x,&y,&z);
mp[x][y]=z;
}
printf("%d",Edmonds_Karp(,n));
return ;
}
Dinic算法:
ORZ SYCstudio
Dinic算法引入了一个叫做分层图的概念。具体就是对于每一个点,我们根据从源点开始的bfs序列,为每一个点分配一个深度,然后我们进行若干遍dfs寻找增广路,每一次由u推出v必须保证v的深度必须是u的深度+1。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
using namespace std; const int INF=0x7f7f7f7f;
const int MAXN=; struct Edge
{
int to,w,next;
}E[MAXN];
int node,head[MAXN],dis[MAXN];
int s,t;
int n,m,ans; void insert(int u,int v,int w)
{
E[++node]=(Edge){v,w,head[u]};
head[u]=node;
E[++node]=(Edge){u,,head[v]};
head[v]=node;
} bool bfs()
{
memset(dis,-,sizeof(dis));
queue<int> Q;
Q.push(s);
dis[s]=;
while(!Q.empty())
{
int q=Q.front();Q.pop();
for(int i=head[q];i;i=E[i].next)
if(E[i].w&&dis[E[i].to]==-)
{
Q.push(E[i].to);
dis[E[i].to]=dis[q]+;
}
}
return dis[t]!=-;
} int dfs(int x,int flow)
{
if(x==t) return flow;
for(int i=head[x];i;i=E[i].next)
if(E[i].w&&dis[E[i].to]==dis[x]+)
{
int minn=dfs(E[i].to,min(flow,E[i].w));
if(minn)
{
E[i].w-=minn;
E[i^].w+=minn;
return minn;
}
}
return ;
} void dinic()
{
while(bfs()) ans+=dfs(s,INF);
} int main()
{
scanf("%d%d%d%d",&n,&m,&s,&t);
for(int i=;i<=m;i++)
{
int u,v,w;
scanf("%d%d%d",&u,&v,&w);
insert(u,v,w);
}
dinic();
printf("%d",ans);
return ;
}