2017-11-04 Sa
$ P(-3, 0) $ 在圆C $ (x-3)^2 + y^2 = 8^2 $ 内,动圆M与圆相切且过P点,求M点轨迹。
设切点 $ A(a, b) $,圆心 \(M(x, y)\),则有 \(R_M = MA = MP = R_C-MC\):
\[ \left\{ \begin{aligned}
(a-3)^2 + b^2 &= 8^2 \\
\sqrt{(x-a)^2+(y-b)^2} &= \sqrt{(x+3)^2+y^2} \\
&= 8-\sqrt{(x-3)^2+y^2}
\end{aligned} \right. \]
(a-3)^2 + b^2 &= 8^2 \\
\sqrt{(x-a)^2+(y-b)^2} &= \sqrt{(x+3)^2+y^2} \\
&= 8-\sqrt{(x-3)^2+y^2}
\end{aligned} \right. \]
Maxima:
solve([(a-3)^2 + b^2 = 8^2, sqrt((x-a)^2+(y-b)^2) = sqrt((x+3)^2+y^2), sqrt((x+3)^2+y^2) = 8-sqrt((x-3)^2+y^2)],[x]);
solve([(a-3)^2 + b^2 = 8^2], [a])
(%i4) solve([(a-3)^2 + b^2 = 8^2], [a]);
2 2
(%o4) [a = 3 - sqrt(64 - b ), a = sqrt(64 - b ) + 3]
solve([sqrt((x+3)^2+y^2) = 8-sqrt((x-3)^2+y^2)], [x])
解不出来……
UPD 2017-11-10 Fr 10:39PM
周一在学校的时候想了一下,由 $ (a-3)^2 + b^2 = 8^2 $ 可知\(a\) \(b\)关系,由 $ \sqrt{(x+3)2+y2} = 8-\sqrt{(x-3)2+y2} $ 可知 \(x\) \(y\) 关系,这样就只剩下两个未知数,然后再带入最后一个方程就行了。
I simplfied in hand but the last step involved a polynomial with too much terms. So I decided to go to Maxima at weekend.
Maxima:
Maxima 5.25.0 http://maxima.sourceforge.net
using Lisp Clozure Common Lisp Version 1.7-r14925M (WindowsX8632)
Distributed under the GNU Public License. See the file COPYING.
Dedicated to the memory of William Schelter.
The function bug_report() provides bug reporting information.
(%i1) solve([(a-3)^2 + b^2 &= 8^2], [a])
Maxima 5.25.0 http://maxima.sourceforge.net
using Lisp Clozure Common Lisp Version 1.7-r14925M (WindowsX8632)
Distributed under the GNU Public License. See the file COPYING.
Dedicated to the memory of William Schelter.
The function bug_report() provides bug reporting information.
(%i1) solve([(a-3)^2 + b^2 = 8^2], [a])
;
2 2
(%o1) [a = 3 - sqrt(64 - b ), a = sqrt(64 - b ) + 3]
(%i2) a
;
(%o2) a
(%i3) a;
(%o3) a
(%i4) solve([sqrt((x-a)^2+(y-b)^2) = 8-sqrt((x-3)^2+y^2)], [y])
;
2 2 2 2 2 2
(%o4) [sqrt(y - 2 b y + x - 2 a x + b + a ) = 8 - sqrt(y + x - 6 x + 9)]
(%i5) solve([sqrt((x-a)^2+(y-b)^2) = 8-sqrt((x-3)^2+y^2)], [y]);
2 2 2 2 2 2
(%o5) [sqrt(y - 2 b y + x - 2 a x + b + a ) = 8 - sqrt(y + x - 6 x + 9)]
(%i6) solve([(x-a)^2+(y-b)^2 = 64 + (x-3)^2+y^2 - 16*sqrt((x-3)^2+y^2)], [y])
;
2 2 2 2
16 sqrt(y + x - 6 x + 9) - 2 a x + 6 x + b + a - 73
(%o6) [y = -------------------------------------------------------]
2 b
(%i7)
Seems I don't know how to use Maxima to solve equation correctly...
I gave it the wrong equation in %i4.. 'a' should not be involved. Try again:
Maxima 5.25.0 http://maxima.sourceforge.net
using Lisp Clozure Common Lisp Version 1.7-r14925M (WindowsX8632)
Distributed under the GNU Public License. See the file COPYING.
Dedicated to the memory of William Schelter.
The function bug_report() provides bug reporting information.
(%i1) solve([sqrt((x+3)^2+y^2) = 8-sqrt((x-3)^2+y^2)], [y]);
2 2 2 2
(%o1) [sqrt(y + x + 6 x + 9) = 8 - sqrt(y + x - 6 x + 9)]
(%i2) solve([(x+3)^2+y^2 = 64 + (x-3)^2+y^2 - 16*sqrt((x-3)^2+y^2)], [y]);
Is 3 x - 16 positive, negative, or zero?
negative
;
2 2
sqrt(7) sqrt(16 - x ) sqrt(7) sqrt(16 - x )
(%o2) [y = - ---------------------, y = ---------------------]
4 4
(%i3)
Well.. let's do it step by step.
\[ \left\{ \begin{aligned}
(a-3)^2 + b^2 &= 8^2 \\
\sqrt{(x-a)^2+(y-b)^2} &= \sqrt{(x+3)^2+y^2} \\
8-\sqrt{(x-3)^2+y^2} &= \sqrt{(x+3)^2+y^2}
\end{aligned} \right. \]
(a-3)^2 + b^2 &= 8^2 \\
\sqrt{(x-a)^2+(y-b)^2} &= \sqrt{(x+3)^2+y^2} \\
8-\sqrt{(x-3)^2+y^2} &= \sqrt{(x+3)^2+y^2}
\end{aligned} \right. \]