codevs3945 完美拓印

时间:2021-08-08 11:23:36

3945 完美拓印

codevs月赛 第一场

时间限制: 1 s

空间限制: 256000 KB

题目等级 : 黄金 Gold

题目描述 Description

小Q获得了一个神奇的印章,这个印章宽n个单位长度,印章的其中三个棱都是直的,而另外一个方向上,对于每个单位宽度的部分,是一样直的,并且与反方向的棱平行,如下图所示。

小Q的印章上有一个不关于中心对称的图形(不一定是上图的Qrz),他现在要在一张地图上拓上印,地图上有一段个m单位长度、近似水平的边界线,但是放大到单位长度时还是有一定的高低差异,但对于单位宽度的部分,是一样直的,与水平轴线垂直,如下图所示。

小Q希望自己的印章一边的边缘能恰好地与边界线重合(不能部分重合、不能越过边界线),他现在只可以将印章旋转180度或者不旋转(这样印章可能存在有两边可以与边界线重合的情况),然后平移到适当的位置,问小Q有多少种可行的方案,两种方案不同被定义为两种方案用印章印出的图案互不重合。

codevs3945 完美拓印

输入描述 Input Description

第一行两个正整数n和m,表示印章的宽度和截取边界线的长度。

第二行n个正整数,表示印章从左到右每个单位宽度对应的两条平行线之间的距离。

第三行m个整数,表示所截取边界线从左到右每个单位宽度对应的竖直方向上的坐标。

输出描述 Output Description

一个整数,表示可行方案的种类数。

样例输入 Sample Input

5 12

3 4 4 3 2

2 4 5 5 4 3 2 2 3 3 2 1

样例输出 Sample Output

3

数据范围及提示 Data Size & Hint

对于30%的数据,有n*m≤2*107

对于60%的数据,有n,m≤105

对于100%的数据,有n,m≤106,所有数字的绝对值不超过109

【思路】

字符串匹配。

将一面的凹凸情况作为一面的特征,如果两面的凹凸状况相同则可以印章,则问题转化为求两种凹凸状况的匹配数目,可以用KMP算法求解。

需要注意的是:

1、   底边也可以匹配。

2、   当n==1的时候应该特判(PT数组)。

【代码】

 #include<cstdio>
#include<cstring>
#include<iostream>
using namespace std; const int maxn = +; int a[maxn],b[maxn],P[maxn],T[maxn],f[maxn];
int n,m,ans; void get_Fail() {
f[]=f[]=;
for(int i=;i<n;i++) {
int j=f[i];
while(j && P[i]!=P[j]) j=f[j];
f[i+]=P[i]==P[j]?j+:;
}
} int KMP() {
get_Fail();
int j=,cnt=;
for(int i=;i<m;i++) {
while(j && T[i]!=P[j]) j=f[j];
if(T[i]==P[j]) j++;
if(j==n) cnt++,j=f[j];
}
return cnt;
} int main() {
scanf("%d%d",&n,&m);
for(int i=;i<n;i++) scanf("%d",&a[i]);
for(int i=;i<m;i++) scanf("%d",&b[i]);
if(n==) {
printf("%d\n",m*);
return ;
} n--; m--;
for(int i=;i<n;i++) P[i]=a[i+]-a[i];
for(int i=;i<m;i++) T[i]=b[i+]-b[i];
ans += KMP(); for(int i=;i<n;i++) P[i]=a[n-i]-a[n-i-];
ans += KMP(); for(int i=;i<n;i++) P[i]=;
ans += *KMP(); printf("%d\n",ans);
return ;
}