一 问题
在hive1.2中使用hive或者beeline执行sql都有进度信息,但是升级到hive2.0以后,只有hive执行sql还有进度信息,beeline执行sql完全silence,在等待结果的过程中完全不知道执行到哪了
1 hive执行sql过程(有进度信息)
hive> select count(1) from test_table;
WARNING: Hive-on-MR is deprecated in Hive 2 and may not be available in the future versions. Consider using a different execution engine (i.e. spark, tez) or using Hive 1.X releases.
Query ID = hadoop_20181227162003_bd82e3e2-2736-42b4-b1da-4270ead87e4d
Total jobs = 1
Launching Job 1 out of 1
Number of reduce tasks determined at compile time: 1
In order to change the average load for a reducer (in bytes):
set hive.exec.reducers.bytes.per.reducer=<number>
In order to limit the maximum number of reducers:
set hive.exec.reducers.max=<number>
In order to set a constant number of reducers:
set mapreduce.job.reduces=<number>
Starting Job = job_1544593827645_22873, Tracking URL = http://rm1:8088/proxy/application_1544593827645_22873/
Kill Command = /export/App/hadoop-2.6.1/bin/hadoop job -kill job_1544593827645_22873
2018-12-27 16:20:27,650 Stage-1 map = 100%, reduce = 100%, Cumulative CPU 116.9 sec
MapReduce Total cumulative CPU time: 1 minutes 56 seconds 900 msec
Ended Job = job_1544593827645_22873
MapReduce Jobs Launched:
Stage-Stage-1: Map: 29 Reduce: 1 Cumulative CPU: 116.9 sec HDFS Read: 518497 HDFS Write: 197 SUCCESS
Total MapReduce CPU Time Spent: 1 minutes 56 seconds 900 msec
OK
104
Time taken: 24.437 seconds, Fetched: 1 row(s)
2 beeline执行sql过程(无进度信息)
0: jdbc:hive2://thrift1:10000> select count(1) from test_table;
WARNING: Hive-on-MR is deprecated in Hive 2 and may not be available in the future versions. Consider using a different execution engine (i.e. spark, tez) or using Hive 1.X releases.
+------+--+
| c0 |
+------+--+
| 104 |
+------+--+
1 row selected (23.965 seconds)
二 代码分析
hive执行sql的详细过程详见:https://www.cnblogs.com/barneywill/p/10185168.html
hive中执行sql最终都会调用到Driver.run,run会调用execute,下面直接看execute代码:
org.apache.hadoop.hive.ql.Driver
public int execute(boolean deferClose) throws CommandNeedRetryException {
...
if (jobs > 0) {
logMrWarning(mrJobs);
console.printInfo("Query ID = " + queryId);
console.printInfo("Total jobs = " + jobs);
}
...
private void logMrWarning(int mrJobs) {
if (mrJobs <= 0 || !("mr".equals(HiveConf.getVar(conf, ConfVars.HIVE_EXECUTION_ENGINE)))) {
return;
}
String warning = HiveConf.generateMrDeprecationWarning();
LOG.warn(warning);
warning = "WARNING: " + warning;
console.printInfo(warning);
// Propagate warning to beeline via operation log.
OperationLog ol = OperationLog.getCurrentOperationLog();
if (ol != null) {
ol.writeOperationLog(LoggingLevel.EXECUTION, warning + "\n");
}
}
可见在hive命令中看到的进度信息是通过console.printInfo输出的;
注意到一个细节,在beeline中虽然没有进度信息,但是有一个warning信息:
WARNING: Hive-on-MR is deprecated in Hive 2 and may not be available in the future versions. Consider using a different execution engine (i.e. spark, tez) or using Hive 1.X releases.
这个warning信息是通过如下代码输出的:
OperationLog ol = OperationLog.getCurrentOperationLog();
if (ol != null) {
ol.writeOperationLog(LoggingLevel.EXECUTION, warning + "\n");
}
所以如果让beeline执行sql也有进度信息,就要通过相同的方式输出;
三 hive进度信息位置
熟悉的进度信息在这里:
org.apache.hadoop.hive.ql.Driver
public int execute(boolean deferClose) throws CommandNeedRetryException {
...
console.printInfo("Query ID = " + queryId);
console.printInfo("Total jobs = " + jobs); private TaskRunner launchTask(Task<? extends Serializable> tsk, String queryId, boolean noName,
String jobname, int jobs, DriverContext cxt) throws HiveException {
...
console.printInfo("Launching Job " + cxt.getCurJobNo() + " out of " + jobs);
org.apache.hadoop.hive.ql.exec.mr.MapRedTask
private void setNumberOfReducers() throws IOException {
ReduceWork rWork = work.getReduceWork();
// this is a temporary hack to fix things that are not fixed in the compiler
Integer numReducersFromWork = rWork == null ? 0 : rWork.getNumReduceTasks(); if (rWork == null) {
console
.printInfo("Number of reduce tasks is set to 0 since there's no reduce operator");
} else {
if (numReducersFromWork >= 0) {
console.printInfo("Number of reduce tasks determined at compile time: "
+ rWork.getNumReduceTasks());
} else if (job.getNumReduceTasks() > 0) {
int reducers = job.getNumReduceTasks();
rWork.setNumReduceTasks(reducers);
console
.printInfo("Number of reduce tasks not specified. Defaulting to jobconf value of: "
+ reducers);
} else {
if (inputSummary == null) {
inputSummary = Utilities.getInputSummary(driverContext.getCtx(), work.getMapWork(), null);
}
int reducers = Utilities.estimateNumberOfReducers(conf, inputSummary, work.getMapWork(),
work.isFinalMapRed());
rWork.setNumReduceTasks(reducers);
console
.printInfo("Number of reduce tasks not specified. Estimated from input data size: "
+ reducers); }
console
.printInfo("In order to change the average load for a reducer (in bytes):");
console.printInfo(" set " + HiveConf.ConfVars.BYTESPERREDUCER.varname
+ "=<number>");
console.printInfo("In order to limit the maximum number of reducers:");
console.printInfo(" set " + HiveConf.ConfVars.MAXREDUCERS.varname
+ "=<number>");
console.printInfo("In order to set a constant number of reducers:");
console.printInfo(" set " + HiveConf.ConfVars.HADOOPNUMREDUCERS
+ "=<number>");
}
}
大部分都在下边这个类里:
org.apache.hadoop.hive.ql.exec.mr.HadoopJobExecHelper
public void jobInfo(RunningJob rj) {
if (ShimLoader.getHadoopShims().isLocalMode(job)) {
console.printInfo("Job running in-process (local Hadoop)");
} else {
if (SessionState.get() != null) {
SessionState.get().getHiveHistory().setTaskProperty(queryState.getQueryId(),
getId(), Keys.TASK_HADOOP_ID, rj.getID().toString());
}
console.printInfo(getJobStartMsg(rj.getID()) + ", Tracking URL = "
+ rj.getTrackingURL());
console.printInfo("Kill Command = " + HiveConf.getVar(job, HiveConf.ConfVars.HADOOPBIN)
+ " job -kill " + rj.getID());
}
} private MapRedStats progress(ExecDriverTaskHandle th) throws IOException, LockException {
...
StringBuilder report = new StringBuilder();
report.append(dateFormat.format(Calendar.getInstance().getTime())); report.append(' ').append(getId());
report.append(" map = ").append(mapProgress).append("%, ");
report.append(" reduce = ").append(reduceProgress).append('%');
...
String output = report.toString();
...
console.printInfo(output);
... public static String getJobEndMsg(JobID jobId) {
return "Ended Job = " + jobId;
}
看起来改动工作量不小,哈哈