什么是广播
我们都知道,Numpy中的基本运算(加、减、乘、除、求余等等)都是元素级别的,但是这仅仅局限于两个数组的形状相同的情况下。
可是大家又会发现,如果让一个数组加1的话,结果时整个数组的结果都会加1,这是什么情况呢?
x = np.arange(3)
x
Out[225]: array([0, 1, 2])
x + 1
Out[226]: array([1, 2, 3])
其实这就是广播机制:Numpy 可以转换这些形状不同的数组,使它们都具有相同的大小,然后再对它们进行运算。给出广播示意图:
广播示例
接下来我们通过实际代码验证下:
a = np.arange(0, 40, 10)
a.shape
Out[228]: (4,)
a
Out[229]: array([ 0, 10, 20, 30])
b = np.array([0,1,2])
b.shape
Out[231]: (3,)
b
Out[232]: array([0, 1, 2])
a = a[:, np.newaxis] # 转换a的维度(形状)
a.shape
Out[234]: (4, 1)
a
Out[235]:
array([[ 0],
[10],
[20],
[30]])
a + b
Out[236]:
array([[ 0, 1, 2],
[10, 11, 12],
[20, 21, 22],
[30, 31, 32]])
明显可以看出,相加前 a 的形状为 (4, 1), b 的形状为 (3, ), a+b 的结果的形状为(4, 3)。计算时,变换结果与上图类似,这里来详细介绍下:
a
Out[237]:
array([[ 0],
[10],
[20],
[30]])
a2 = np.array(([i * 3 for i in a.tolist()])) # 会先将a转化为a2
a2
Out[239]:
array([[ 0, 0, 0],
[10, 10, 10],
[20, 20, 20],
[30, 30, 30]])
b
Out[240]: array([0, 1, 2])
b2 = np.array([b.tolist()] * 4) # 再将b转为b2
b2
Out[242]:
array([[0, 1, 2],
[0, 1, 2],
[0, 1, 2],
[0, 1, 2]])
a2 + b2
Out[243]:
array([[ 0, 1, 2],
[10, 11, 12],
[20, 21, 22],
[30, 31, 32]])