Levenberg-Marquardt算法基础知识

时间:2021-08-10 06:51:37

Levenberg-Marquardt算法基础知识

(2013-01-07 16:56:17)

 

什么是最优化?
Levenberg-Marquardt算法是最优化算法中的一种。最优化是寻找使得函数值最小的参数向量。它的应用领域非常广泛,如:经济学、管理优化、网络分析、最优设计、机械或电子设计等等。
根据求导数的方法,可分为2大类。第一类,若f具有解析函数形式,知道x后求导数速度快。第二类,使用数值差分来求导数。根据使用模型不同,分为非约束最优化约束最优化最小二乘最优化
 
什么是Levenberg-Marquardt算法?
它是使用最广泛的非线性最小二乘算法,中文为列文伯格-马夸尔特法。它是利用梯度求最大(小)值的算法,形象的说,属于“爬山”法的一种。它同时具有梯度法牛顿法的优点。当λ很小时,步长等于牛顿法步长,当λ很大时,步长约等于梯度下降法的步长。
 
LM算法的实现并不算难,它的关键是用模型函数 f 对待估参数向量p在其领域内做线性近似,忽略掉二阶以上的导数项,从而转化为线性最小二乘问题,它具有收敛速度快等优点。LM算法属于一种“信赖域法”,所谓的信赖域法,即是:在最优化算法中,都是要求一个函数的极小值,每一步迭代中,都要求目标函数值是下降的,而信赖域法,顾名思义,就是从初始点开始,先假设一个可以信赖的最大位移s,然后在以当前点为中心,以s为半径的区域内,通过寻找目标函数的一个近似函数(二次的)的最优点,来求解得到真正的位移。在得到了位移之后,再计算目标函数值,如果其使目标函数值的下降满足了一定条件,那么就说明这个位移是可靠的,则继续按此规则迭代计算下去;如果其不能使目标函数值的下降满足一定的条件,则应减小信赖域的范围,再重新求解。
 
LM算法需要对每一个待估参数求偏导,所以,如果你的拟合函数 f 非常复杂,或者待估参数相当地多,那么可能不适合使用LM算法,而可以选择Powell算法(Powell算法不需要求导)。